Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-15T03:25:23.613Z Has data issue: false hasContentIssue false

Lepidocrocite in Hydrothermal Sediments of the Atlantis II and Thetis Deeps, Red Sea

Published online by Cambridge University Press:  01 January 2024

Nurit Taitel Goldman*
Affiliation:
The Open University of Israel, P.O. Box 39328 Tel Aviv, Israel The Seagram Center for Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
Christian Bender Koch
Affiliation:
Chemistry Department, The Royal Veterinary and Agricultural University, Thorvaldsensvej 40, Frederiksberg, DK-1871 Frb.C., Denmark
Arieh Singer
Affiliation:
The Seagram Center for Soil and Water Sciences, Faculty of Agricultural, Food and Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lepidocrocite (γ-FeOOH) formation in the hydrothermal brines of the Thetis and Atlantis II Deeps in the Red Sea results in markedly different crystals (size and shape). The only foreign element associated with the crystals is Si and analyses of samples from the two deeps yielded average Si/Fe (molar) ratios of 0.03 and 0.11, respectively. The Si/Fe ratio does not affect formation of a perfect lattice along [010]. Direct observations of crystal morphology as well as X-ray diffraction patterns, Mössbauer and infrared spectra, all indicate that the Atlantis II Deep lepidocrocite is less crystalline than the Thetis Deep lepidocrocite. In one sample a poly-disperse size distribution was resolved indicating a fine-scale variation in precipitation conditions. Infrared spectroscopy suggests that the Si is adsorbed on the lepidocrocite surfaces, probably also forming polymers, as both Fe-O-Si and Si-O-Si bonds can be detected. The formation of the Atlantis II Deep lepidocrocite is due to fast oxidation of Fe2+. The blanket-like layer of lepidocrocite in Atlantis II and Thetis Deeps lepidocrocite was probably formed as a result of precipitation during an abrupt oxidation event of the brine, triggered by down-welling of a condensed oxidized brine, which originated in the northern part of the Red Sea. A difference in Si concentrations determined the different crystal properties of the lepidocrocite formed in the two deeps.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Anschutz, P. Blanc, G. and Stille, P., (1995) Origin of fluids and the evolution of the Atlantis II deep hydrothermal system, Red Sea: strontium isotope study Geochimica et Cosmochimica Acta 59 47994808 10.1016/0016-7037(95)00350-9.CrossRefGoogle Scholar
Backer, V.H. and Richter, H., (1973) Die rezente hydrothermal-sedimentäre Lagerstätte Atlantis. II. Tief im Roten Meer Geologische Rundschau 62 697737 10.1007/BF01820957.10.1007/BF01820957CrossRefGoogle Scholar
Bignell, R.D., (1975) The geochemistry of metalliferous brine precipitates and other sediments from the Red Sea London University of London.Google Scholar
Bischoff, J.L., Degens, E.T. and Ross, D.A., (1969) Red Sea geothermal brine deposits: their mineralogy, chemistry and genesis Hot Brines and Recent Heavy Metal Deposits in the Red Sea Heidelberg/New York Springer-Verlag Berlin/ 368401 10.1007/978-3-662-28603-6_37.CrossRefGoogle Scholar
Butuzova, G.Y.u. and Lisitsyna, N.A., (1984) Metal deposits in deep subbasins of the Red Sea; ore geochemistry and distribution pattern Lithology and Mineral Resources USSR 18 224 238.Google Scholar
Butuzova, G.Y.u. Dritz, V.A. Morozov, A.A. and Gorschkov, A.I., (1990) Processes of formation of iron-manganese oxyhydroxides in Atlantis II and Thetis Deeps in the Red Sea Special Publications of the International Association of Sedimentology 11 57 72.Google Scholar
Cambier, P., (1986) Infrared study of goethite of varying crystallinity and particle size. I. Interpretation of OH and lattice vibration frequencies Clay Minerals 21 191200 10.1180/claymin.1986.021.2.08.CrossRefGoogle Scholar
Cornell, R.M. and Schwertmann, U., (1996) The Iron Oxides, Structure, Properties, Reactions, Occurrence and Uses New York VCH Verlagsgesellschaft GmbH Weinheim 573 pp.Google Scholar
Craig, H., Degens, E.T. and Ross, D.A., (1969) Geochemistry and origin of the Red Sea brines Hot Brines and Recent Heavy Metal Deposits in the Red Sea Heidelberg/New York Springer-Verlag Berlin/ 208242 10.1007/978-3-662-28603-6_22.CrossRefGoogle Scholar
Danielsson, L.G. Dyrssen, D. and Graneli, A., (1980) Chemical investigation of Atlantis II and discovery brines in the Red Sea Geochimica et Cosmochimica Acta 44 20512065 10.1016/0016-7037(80)90203-3.CrossRefGoogle Scholar
Dupré, B. Blanc, G. Bolegue, J. and Allegre, C.J., (1988) Metal remobilization at a spreading centre studied using lead isotopes Nature 333 165167 10.1038/333165a0.CrossRefGoogle Scholar
Hartmann, M. Scholten, J.C. Stoffers, P. and Wehner, F., (1998) Hydrographic structure of brine filled deeps in the Red Sea — new results from Shaban, Kerbit, Atlantis II and Discovery Deep Marine Geology 144 311330 10.1016/S0025-3227(97)00055-8.CrossRefGoogle Scholar
Hartmann, M. Scholten, J.C. and Stoffers, P., (1998) Hydrographic structure of brine filled deeps in the Red Sea: Correction of Atlantis II Deep temperatures Marine Geology 144 331332 10.1016/S0025-3227(97)00126-6.10.1016/S0025-3227(97)00126-6CrossRefGoogle Scholar
Karim, Z. and Newman, A.C.D., (1986) The possible effect of soluble silicon on the lepidocrocite content of gley soils from England and Bangladesh Journal of Soil Science 37 259266 10.1111/j.1365-2389.1986.tb00027.x.CrossRefGoogle Scholar
Lewis, D.G. and Farmer, V.C., (1986) Infrared absorption of surface hydroxyl groups and lattice vibrations in lepidocrocite (γ-FeOOH) and boehmite (γ-AlOOH) Clay Minerals 21 93100 10.1180/claymin.1986.021.1.08.CrossRefGoogle Scholar
McKeague, J.A. and Day, J.H., (1966) Dithionite- and oxalateextractable Fe and Al as aids in differentiating various classes of soils Canadian Journal of Soil Science 46 1322 10.4141/cjss66-003.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L. (1960) Iron oxides removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Pp. 317327 in: Proceedings of the 7th National Conference of the Clay Minerals Society, Washington, D.C., 1958 (Swineford, A., editor). Pergamon Press, New York.Google Scholar
Niemeyer, J. Chen, Y. and Bollag, J.M., (1992) Characterization of humic acids, composts and peat by diffuse reflectance Fourier Transform infrared spectroscopy Soil Science Society of America Journal 56 135140 10.2136/sssaj1992.03615995005600010021x.10.2136/sssaj1992.03615995005600010021xCrossRefGoogle Scholar
Schoel, M. and Faber, E., (1978) New isotopic evidence for the origin of Red Sea brines Nature 275 436438 10.1038/275436a0.CrossRefGoogle Scholar
Scholten, J.C., (1984) Mineralogische Untersuchungen an Sedimentkernen aus dem Thetis-Tief, Rotes Meer Heidelberg, Germany Universität Heidelberg.Google Scholar
Scholten, J.C. Stoffers, P. Walter, P. and Plunger, W., (1991) Evidence for episodic hydrothermal activity in the Red Sea, from the composition and formation of hydrothermal sediments, Thetis Deep Tectonophysics 190 109117 10.1016/0040-1951(91)90357-X.10.1016/0040-1951(91)90357-XCrossRefGoogle Scholar
Schwertmann, U., (1959) Die fraktionierte Extraktion der freien Eiseoxyde in Boden, ihre mineralogischen Formen und ihre Entstehungsweisen Zeitschrift für Pflanzenernahrung Düngung und Bodenkunde 84 194204 10.1002/jpln.19590840131.CrossRefGoogle Scholar
Schwertmann, U., (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoniumoxalat-Lösung Zeitschrift für Pflanzenernährung Düngung und Bodenkunde 105 194202 10.1002/jpln.3591050303.10.1002/jpln.3591050303CrossRefGoogle Scholar
Schwertmann, U. and Taylor, R.M., (1979) Natural and synthetic poorly crystallized lepidocrocite Clay Minerals 14 285293 10.1180/claymin.1979.014.4.05.CrossRefGoogle Scholar
Schwertmann, U. and Thalmann, H., (1976) The influence of [Fe(II)], [Si] and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solutions Clay Minerals 11 189200 10.1180/claymin.1976.011.3.02.CrossRefGoogle Scholar
Schwertmann, U. and Wolska, E., (1990) The influence of aluminum on iron oxides, XV. Al-for-Fe substitution in synthetic lepidocrocite Clays and Clay Minerals 38 209212 10.1346/CCMN.1990.0380213.CrossRefGoogle Scholar
Schwertmann, U. Friedl, J. Stanjek, H. Murad, E. and Bender Koch, C., (1998) Iron oxides and smectites from the Atlantis II Deep, Red Sea European Journal of Mineralogy 10 953967 10.1127/ejm/10/5/0953.10.1127/ejm/10/5/0953CrossRefGoogle Scholar
Shanks, W.C. III and Bischoff, J.L., (1980) Geochemistry, sulfur isotope composition, and accumulation rates of Red Sea Geothermal deposits Economic Geology and the Bulletin of the Society of Economic Geologists 75 445459 10.2113/gsecongeo.75.3.445.CrossRefGoogle Scholar
Stoffers, P. and Ross, D.A., (1972) Sedimentary history of the Red Sea Initial Report of the Deep Sea Drilling project XXIII 849 865.Google Scholar
Taylor, R.M., (1984) Influence of chloride on the formation of iron oxides from Fe(II) chloride. II. Effect of [Cl] on the formation of lepidocrocite and its crystallinity Clays and Clay Minerals 32 173 180.Google Scholar