Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:32:09.537Z Has data issue: false hasContentIssue false

Laboratory-Simulated Diagenesis of Nontronite

Published online by Cambridge University Press:  01 January 2024

Matthew A. Miller
Affiliation:
School of Geology and Geophysics, University of Oklahoma, 100 East Boyd Street, Suite 710, Norman, OK 73019, USA
Andrew S. Madden*
Affiliation:
School of Geology and Geophysics, University of Oklahoma, 100 East Boyd Street, Suite 710, Norman, OK 73019, USA
Megan Elwood Madden
Affiliation:
School of Geology and Geophysics, University of Oklahoma, 100 East Boyd Street, Suite 710, Norman, OK 73019, USA
R. Douglas Elmore
Affiliation:
School of Geology and Geophysics, University of Oklahoma, 100 East Boyd Street, Suite 710, Norman, OK 73019, USA
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nontronite NAu-1 was exposed to moderate temperature and pressure conditions (250 and 300°C at 100 MPa pressure) in KCl brine to simulate burial diagenetic systems over accelerated time periods appropriate for laboratory experiments. Powder X-ray diffraction and transmission electron microscopy analysis of the coexisting mixed-layer and discrete 10 Å clay reaction products, and inductively coupled plasma-mass spectrometry analysis of the remaining fluids, indicated that the clay retained octahedral Fe and was identified as Fe-celadonite. The release of Fe from smectite during burial diagenesis has been hypothesized as a mechanism for magnetite authigenesis. High Al activity relative to Fe may be critical to the formation of an aluminous illite and any associated authigenic magnetite.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Abercrombie, H. Hutcheson, I. Bloch, J. and de Caritat, P., 1994 Silica activity and the smectite illite reaction Geology 22 539542.2.3.CO;2>CrossRefGoogle Scholar
Ahn, H. and Peacor, D.R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Clays and Clay Minerals 34 165179.Google Scholar
Allen, V.T. and Scheid, V.E., 1946 Nontronite in the Columbia river region American Mineralogist 31 294312.Google Scholar
Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533.CrossRefGoogle Scholar
Andrews, A.J., 1980 Saponite and celadonite in layer 2 basalts, DSDP Leg 37 Contributions to Mineralogy and Petrology 73 323340.CrossRefGoogle Scholar
Banerjee, S. Elmore, R.D. and Engel, M.H., 1997 Chemical remagnetization and burial diagenesis: Testing the hypothesis in the Pennsylvanian Belden Formation, Colorado Journal of Geophysical Research 102 24,82524,842.CrossRefGoogle Scholar
Bartels, JM e, 1996 Methods of Soil Analysis: Part 3 Chemical Methods Madison, Wisconsin Soil Science of America.Google Scholar
Blumstein, A.M. Elmore, R.D. Engel, M.H. Elliot, C. and Basu, A., 2004 Paleomagnetic dating of burial diagenesis in Mississippian carbonates, Utah Journal of Geophysical Research 109 116.CrossRefGoogle Scholar
Brothers, L.A. Engel, M.H. and Elmore, R.D., 1996 The late diagenetic conversion of pyrite to magnetite by organically complexed ferric iron Chemical Geology 130 114.CrossRefGoogle Scholar
Chevrier, V. Poulet, F. and Bibring, J.-P., 2007 Early geochemical environment of Mars as determined from thermodynamics of phyllosilicates Nature 448 6063.CrossRefGoogle Scholar
Chipera, S. and Bish, D., 2001 Baseline studies of the Clay Minerals Society Source Clays: Powder X-ray diffraction analyses Clays and Clay Minerals 49 398409.CrossRefGoogle Scholar
Cogoini, M., 2001 Magnetic minerals: Understanding the processes of formation in soils and clays and identifying their presence in the rock record PhD thesis Norman, Oklahoma, USA University of Oklahoma.Google Scholar
D’Antonio, M. and Kristensen, M.B., 2005 Hydrothermal alteration of oceanic crust in the West Phillippine Sea Basin (Ocean Drilling Program Leg 195, Site 1201): inferences from a mineral chemistry investigation Mineralogy and Petrology 83 87112.CrossRefGoogle Scholar
Dainyak, L.G. Drits, V.A. Zviagina, B.B. and Lindgreen, H., 2006 Cation redistribution in the octahedral sheet during diagenesis of illite-smectites from Jurassic and Cambrian oil source rock shales American Mineralogist 91 589603.CrossRefGoogle Scholar
Dekov, V.M. Kamenov, G.D. Stummeyer, J. Thiry, M. Savelli, C. Shanks, W.C. Fortin, D. Kuzmann, E. and Vértes, A., 2007 Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea) Chemical Geology 245 103119.CrossRefGoogle Scholar
Dennie, Devin Elmore, R. D. Deng, John Manning, Earl and Pannalal, Johari, 2012 Palaeomagnetism of the Mississippian Barnett Shale, Fort Worth Basin, Texas Geological Society, London, Special Publications 371 1 89106.CrossRefGoogle Scholar
Dong, H. Peacor, D. and Freed, R.L., 1997 Phase relations among smectite, R1 illite-smectite, and illite American Mineralogist 82 379391.CrossRefGoogle Scholar
Drief, A. Martinez-Ruiz, F. Nieto, F. and Sanchez, N.V., 2002 Transmission electron microscopy of smectite in K-enriched seawater solution at 50°C and basic pH Clays and Clay Minerals 50 746756.CrossRefGoogle Scholar
Drits, V.A. Zviagina, B.B. McCarty, D.K. and Salyn, A.L., 2010 Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite American Mineralogist 95 348361.CrossRefGoogle Scholar
Eberl, D.D. Whitney, G. and Khoury, H., 1978 Hydrothermal reactivity of smectite American Mineralogist 63 401409.Google Scholar
Ehlmann, B.L. Mustard, J.F. Murchie, S.L. Bibring, J.P. Meunier, A. Fraeman, A.A. and Langevin, Y., 2011 Subsurface water and clay mineral formation during the early history of Mars Nature 479 5360.CrossRefGoogle ScholarPubMed
Elliott, W.C. Osborn, S. O’Brien, V. Elmore, R.D. Engel, M.H. and Wampler, M., 2006 A comparison of K-Ar ages of diagenetic illite and the age implications of a remagnetization in the Cretaceous Marias River Shale, Disturbed Belt, Montana Journal of Geochemical Exploration 89 9295.CrossRefGoogle Scholar
Elmore, R.D. and Leach, M.C., 1990 Remagnetization of the Rush Springs Formation, Cement, Oklahoma: Implications for dating hydrocarbon migration and aeromagnetic exploration Geology 18 124127.2.3.CO;2>CrossRefGoogle Scholar
Elmore, R.D. Engel, M.H. Crawford, L. Nick, K. Imbus, S. and Sofer, Z., 1987 Evidence for a relationship between hydrocarbons and authigenic magnetite Nature 325 428430.CrossRefGoogle Scholar
Elmore, R.D. Kelley, J. Evans, M. and Lewchuk, M., 2001 Remagnetization and Orogenic Fluids: Testing the hypothesis in the central Appalachians Geological Journal International 144 568576.Google Scholar
Eslinger, E. and Pevear, D., 1988.Clay Minerals for Petroleum Geologists and Engineers SEPM Short Course No. 22CrossRefGoogle Scholar
Fernández-Caliani, J.C. Crespo, E. Rodas, M. Barrenechea, J.F. and Luque, F.J., 2004 Formation of nontronite from oxidative dissolution of pyrite disseminated in Precambrian felsic metavolcanics of the southern Iberian Massif (Spain) Clays and Clay Minerals 52 106114.CrossRefGoogle Scholar
Ferrage, E. Vidal, O. Mosser-Ruck, R. Cathelineau, M. and Cuadros, J., 2011 A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy American Mineralogist 96 207223.CrossRefGoogle Scholar
Gill, J.D. Elmore, R.D. and Engel, M.H., 2002 Chemical remagnetization and clay diagenesis: Testing the hypothesis in the Cretaceous sedimentary rocks of northwestern Montana Physics and Chemistry of the Earth 27/25-31 11311139.CrossRefGoogle Scholar
Guthrie, D.G. and Veblen, D.R., 1989 High Resolution Transmission Electron Microscopy of mixed layer illite/ smectite: Computer simulation Clays and Clay Minerals 37 111.CrossRefGoogle Scholar
Güven, N. and Huang, W., 1991 Effects of octahedral Mg and Fe substitutions on hydrothermal illitization reactions Clays and Clay Minerals 39 387399.CrossRefGoogle Scholar
Henning, K. and Störr, M., 1986 Electron Micrographs (TEM, SEM) of clays and clay minerals Berlin, Germany Akademi-Verlag.Google Scholar
Hirt, A. Banin, A. and Gehring, A., 1993 Thermal generation of ferromagnetic minerals from iron-enriched smectites Geophysics Journal International 115 11611168.CrossRefGoogle Scholar
Holloway, J.R., 1984 Graphite-CH4-H2O-CO2 equilibria at low-grade metamorphic conditions Geology 12 455458.2.0.CO;2>CrossRefGoogle Scholar
Hower, J. Eslinger, W.V. Hower, M. and Perry, E.A., 1976 Mechanism of burial metamorphism of argillaceous sediments: I. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Huang, W. Longo, J.M. and Pevear, D.R., 1993 An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer Clays and Clay Minerals 41 162177.CrossRefGoogle Scholar
Hugget, J.M. Gale, A.S. and Clauer, N., 2001 The nature and origin of non-marine 10 Å clay from the Late Eocene and Early Oligocene of the Isle of Wright (Hampshire Basin), UK Clay Minerals 36 447464.CrossRefGoogle Scholar
Inoue, A., 1983 Potassium fixation by clay minerals during hydrothermal treatment Clays and Clay Minerals 31 8192.CrossRefGoogle Scholar
Inoue, A. Kohyama, N. Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays and Clay Minerals 35 111120.CrossRefGoogle Scholar
Jackson, M. McCabe, C. Ballard, M.M. and Van der Voo, R., 1988 Magnetite authigenesis and diagenetic paleotemperatures across the northern Appalachian basin Geology 16 592595.2.3.CO;2>CrossRefGoogle Scholar
Jaisi, D.P. Dong, H. and Morton, J.P., 2008 Partitioning of Fe(II) in reduced nontronite (NAu-2) to reactive sites: reactivity in terms of Tc(VII) reduction Clays and Clay Minerals 56 175189.CrossRefGoogle Scholar
Jaisi, D.P. Eberl, D.D. Dong, H. and Kim, J., 2011 The formation of illite from nontronite by mesophilic and thermophilic bacterial reaction Clays and Clay Minerals 59 2133.CrossRefGoogle Scholar
Katz, B. Elmore, R.D. Engel, M.H. Cogoini, M. and Ferry, S., 2000 Associations between burial diagenesis of smectite, chemical remagnetization and magnetite authigenesis in the Vocontian Trough of SE-France Journal of Geophysical Research 105 851868.CrossRefGoogle Scholar
Katz, B. Elmore, R.D. Engel, M.H. Cogoini, M. and Ferry, S., 1998 Widespread chemical remagnetization: Orogenic fluids or burial diagenesis of clays? Geology 26 603606.2.3.CO;2>CrossRefGoogle Scholar
Keeling, J.L. Raven, M.D. and Gates, W.P., 2000 Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Africa Clays and Clay Minerals 48 537548.CrossRefGoogle Scholar
Kennedy, M.J. Pevear, D.R. and Hill, R.J., 2002 Mineral surface control of organic carbon in black shale Science 295 657660.CrossRefGoogle ScholarPubMed
Kim, J. Furukawa, Y. Daulton, T.L. Lavoie, D. and Newell, S.W., 2003 Characterization of microbially Fe(III)-reduced nontronite: environmental cell-transmission electron microscopy study Clays and Clay Minerals 51 382389.CrossRefGoogle Scholar
Kim, J. Dong, H. Seabaugh, J. Newell, S.W. and Eberl, D.D., 2004 Role of microbes in the smectite-to-illite reaction Science 303 830832.CrossRefGoogle ScholarPubMed
Köhler, B. Singer, A. and Stoffers, P., 1994 Biogenic nontronite from marine white smoker chimneys Clays and Clay Minerals 42 689701.CrossRefGoogle Scholar
Kostka, J.E. Haefele, E. Viehweger, R. and Stucki, J.W., 1999 Respiration and dissolution of iron(III)-containing clay minerals by bacteria Environmental Science & Technology 33 31273133.CrossRefGoogle Scholar
Lanson, B. Sakharov, B.A. Claret, F. and Drits, V., 2009 Diagenetic smectite-to-illite transition in clay-rich sediments: A reappraisal of X-ray diffraction results using the multispecimen method American Journal of Science 309 476516.CrossRefGoogle Scholar
Li, G. Peacor, D.R. Coombs, D.S. and Kawachi, Y., 1997 Solid solution in the celadonite family: The new minerals ferroceladonite K2(Fe2+)2(Fe3+)2Si8O20(OH)4, and ferroaluminoceladonite, K2(Fe2+)2Al2Si8O20(OH)4 American Mineralogist 82 503511.CrossRefGoogle Scholar
Li, Y. Vali, H. Sears, S.K. Yang, J. Deng, B. and Zhang, C.L., 2004 Iron reduction and alteration of nontronite NAu-2 by a sulfate-reducing bacterium Geochimica et Cosmochimica Acta 68 32513260.CrossRefGoogle Scholar
Lindgreen, H. Drits, V.A. Sakharov, B.A. Salyn, A.L. Wrang, P. and Dainyak, L.G., 2000 Illite-smectite structural changes during metamorphism in black Cambrian Alum shales from the Baltic area American Mineralogist 85 12231238.CrossRefGoogle Scholar
Longuépeé, H. and Cousineau, P.A., 2006 Constraints on the genesis of ferrian illite and aluminum-rich glauconite: potential impact on sedimentology and isotopic studies The Canadian Mineralogist 44 967980.CrossRefGoogle Scholar
Lorimer, G., 1987 Quantitative X-ray microanalysis of thin specimens in the transmission electron microscope; a review Mineralogical Magazine 51 4960.CrossRefGoogle Scholar
Lovley, D.R. and Chapelle, F.H., 1995 Deep surface microbial processes Reviews of Geophysics 33 365381.CrossRefGoogle Scholar
Lynch, F.L. Mack, L.E. and Land, L.S., 1997 Burial diagenesis of illite/smectite in shales and the origin of authigenic quartz and secondary porosity in sandstones Geochimica et Cosmochimica Acta 61 19952006.CrossRefGoogle Scholar
Mas, A. Meunier, A. Beaufort, D. Patrier, P. and Dudoignon, P., 2008 Clay minerals in basalt-hawaiite rocks from Mururoa Atoll (French Polynesia). I. Mineralogy Clays and Clay Minerals 56 711729.CrossRefGoogle Scholar
McCabe, C. Van der Voo, R. Peacor, D.R. Scotese, C.R. and Freeman, R., 1983 Diagenetic magnetite carries ancient yet secondary remanence in some Paleozoic sedimentary carbonates Geology 11 221223.2.0.CO;2>CrossRefGoogle Scholar
McCabe, C. Sassen, R. and Saffer, B., 1987 Occurrence of secondary magnetite within biodegraded oil Geology 15 710.2.0.CO;2>CrossRefGoogle Scholar
McCarty, D.K. Sakharov, B.A. and Drits, V.A., 2008 Early clay diagenesis in gulf coast sediments: New insights from XRD profile modeling Clays and Clay Minerals 56 359379.CrossRefGoogle Scholar
McCarty, D.K. Sakharov, B.A. and Drits, V.A., 2009 New insights into smectite illitization: A zoned K-bentonite revisited American Mineralogist 94 16531671.CrossRefGoogle Scholar
Meunier, A., 2005 Clays Berlin Springer 472 pp..Google Scholar
Meunier, A. and Velde, B., 2004 Illite Berlin Springer 286 pp..CrossRefGoogle Scholar
Meunier, A. Petit, S. Cockell, C.S. El Albani, A. and Beaufort, D., 2010 The Fe-rich clay microsystems in basalt-komatiite lavas: importance of Fe-smectites for prebiotic molecule catalysis during the Hadean Eon Origin of Live and Evolutionary Biospheres 40 253272.CrossRefGoogle ScholarPubMed
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification of Clay Minerals New York Oxford University Press 371 pp..Google Scholar
Moreau, M.G. Adera, M. and Enkin, R.J., 2005 The magnetization of clay-rich rocks in sedimentary basins: low-temperature experimental formation of magnetic carriers in natural samples Earth and Planetary Science Letters 230 193210.CrossRefGoogle Scholar
Murakami, T. Inoue, A. Lanson, B. Meunier, A. and Beaufort, T., 2005 Illite-smectite mixed layer minerals in the hydrothermal alteration of volcanic rocks: II. One dimensional High Resolution Transmission Electron Microscopy structure images and formation mechanisms Clay and Clay Minerals 53 440451.CrossRefGoogle Scholar
Mustard, J.F. Murchie, S.L. Pelkey, S.M. Ehlmann, B.L. Milliken, R.E. Grant, J.A. Bibring, J.P. Poulet, F. Bishop, J. Dobrea, E.N. Roach, L. Seelos, F. Arvidson, R.E. Wiseman, S. Green, R. Hash, C. Humm, D. Malaret, E. McGovern, J.A. Seelos, K. Clancy, T. Clark, R. Marais, D.D. Izenberg, N. Knudson, A. Langevin, Y. Martin, T. McGuire, P. Morris, R. Robinson, M. Roush, T. Smith, M. Swayze, G. Taylor, H. Titus, T. and Wolff, M., 2008 Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument Nature 454 305309.CrossRefGoogle ScholarPubMed
Odin, G.S., 1988 Developments in Sedimentology: Green Marine Clays Amsterdam Elsevier.Google Scholar
Odom, I.E., 1984 Glauconite and celadonite minerals Micas 13 545572.CrossRefGoogle Scholar
Olives, J. Amouric, M. and Perbost, R., 2000 Mixed layering of illite-smectite: Results from high-resolution transmission electron microscopy and lattice-energy calculations Clays and Clay Minerals 48 282289.CrossRefGoogle Scholar
O’Reilly, S.E. Watkins, J. Furukawa, , 2005 Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria Geochemical Transactions 6 6776.CrossRefGoogle ScholarPubMed
Paul, H.J. Gillis, K.M. Coggon, R.M. and Teagle, D.A.H., 2006 ODP Site 1224: A missing link in the investigation of seafloor weathering Geochemistry Geophysics Geosystems 7Q02003.CrossRefGoogle Scholar
Pevear, D.R., 1999 Illite and hydrocarbon exploration Proceedings of the National Academy of Sciences U.S.A. 96, 34403446.Google Scholar
Pollastro, R.M., 1985 Mineralogical and morphological evidence for the formation of illite at the expense of illite/smectite Clays and Clay Minerals 33 265274.CrossRefGoogle Scholar
Potter, P. Maynard, J. and Depetris, P., 2005 Mud and Mudstones: Introduction and Overview New York Springer 128154.CrossRefGoogle Scholar
Rask, J.H. Bryndzia, L.T. Braunsdorf, N.R. and Murray, T.E., 1997 Smectite illitization in Pliocene-age Gulf of Mexico Mudrocks Clays and Clay Minerals 45 99109.CrossRefGoogle Scholar
Ribeiro, F.R. Fabris, J.D. Kostka, J.E. Komadel, P. and Stucki, J.W., 2009 Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mö ssbauer spectroscopic study of Garfield nontronite Pure and Applied Chemistry 81 14991509.CrossRefGoogle Scholar
Seyfried, W.E. Jr. and Bischoff, J.L., 1979 Low temperature basalt alteration by seawater: an experimental study at 70°C and 150°C Geochimica et Cosmochimica Acta 43 19371947.CrossRefGoogle Scholar
Środoń, J., 1980 Precise identification of illite/smectite interstratifications by X-ray powder diffraction Clays and Clay Minerals 28 401411.CrossRefGoogle Scholar
Stucki, J.W., 2011 A review of the effects of iron redox cycles on smectite properties Comptes Rendus Geoscience 343 199209.CrossRefGoogle Scholar
Stucki, J.W. and Kostka, J.E., 2006 Microbial reduction of iron in smectite Comptes Rendus Geoscience 338 468475.CrossRefGoogle Scholar
Suk, D. Van der Voo, R. and Peacor, D.R., 1990 Scanning and transmission electron microscope observations of magnetite and other iron phases in Ordovician carbonates from east Tennessee Journal of Geophysical Research 95 12,32712,336.CrossRefGoogle Scholar
Suk, D. Peacor, D.R. and Van der Voo, R., 1990 Replacement of pyrite framboids by magnetite in limestone and implications for paleomagnetism Nature 345 611613.CrossRefGoogle Scholar
Tohver, E. Weil, A.B. Solum, J.G. and Hall, C.M., 2008 Direct dating of carbonate remagnetization by 40Ar/39Ar analysis of the smectite-illite transformation Earth and Planetary Science Letters 274 524530.CrossRefGoogle Scholar
Ulrey, A.L. and Drees, RL e, 2008 Methods of Soil Analysis: Part 5 — Mineralogical Methods Madison, Wisconsin. USA Soil Science Society of America.CrossRefGoogle Scholar
Velde, B., 1972 Celadonite Mica: Solid solution and stability Contributions to Mineralogy and Petrology 37 235247.CrossRefGoogle Scholar
Veblen, D.R. Guthrie, D.G. Livi, K.J.T. and Reynolds, R.C., 1990 High-resolution transmission electron microscopy and electron diffraction of mixed layer illite-smectite: Experimental results Clays and Clay Minerals 38 113.CrossRefGoogle Scholar
Vorhies, J.S. and Gaines, R.R., 2009 Microbial dissolution of clay minerals as a source of iron and silica in marine sediments Nature Geoscience 2 221225.CrossRefGoogle Scholar
Weaver, C.E., 1960 Possible uses of clay minerals in search for oil American Association of Petroleum Geologists Bulletin 44 15051518.Google Scholar
Weil, A.B. and Van der Voo, R., 2002 Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Fe-oxide: A scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain Journal of Geophysical Research 107 2063.CrossRefGoogle Scholar
Wise, W.S. and Eugster, H.P., 1964 Celadonite: synthesis, thermal stability and occurrence American Mineralogist 49 10311083.Google Scholar
Woods, S. Elmore, R.D. and Engel, M., 2002 Paleomagnetic dating of the smectite-to-illite conversion: testing the hypothesis in Jurassic sedimentary rocks, Skye, Scotland Journal of Geophysical Research 107 2091.CrossRefGoogle Scholar
Zegers, T.E. Dekkers, M.J. and Bailly, S., 2003 Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: Role of temperature, fluids, and deformation Journal Geophysical Research 108 2357.CrossRefGoogle Scholar
Zhang, G. Kim, J. Dong, H. and Sommer, A.J., 2007 Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer American Mineralogist 92 14011410.CrossRefGoogle Scholar
Zwing, A. Clauer, N. Liewig, N. and Bachtadse, V., 2009 Identification of remagnetization processes in Paleozoic sedimentary rocks of the northeast Rhenish Massif in Germany by K/Ar dating and REE tracing of authigenic illite and Fe oxides Journal of Geophysical Research 114 B06104.CrossRefGoogle Scholar