Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-24T23:38:01.385Z Has data issue: false hasContentIssue false

Kaolinite to Halloysite-7 Å Transformation in the Kaolin Deposit of São Vicente De Pereira, Portugal

Published online by Cambridge University Press:  28 February 2024

Iuliu Bobos
Affiliation:
Department of Geosciences, University of Aveiro, 3810-Aveiro, Portugal
Joelle Duplay*
Affiliation:
Centre de Geochémie de la Surface, Universite “Louis Pasteur”, 67084-Strasbourg Cedex, France
João Rocha
Affiliation:
Department of Chemistry, University of Aveiro, 3810-Aveiro, Portugal
Celso Gomes
Affiliation:
Department of Geosciences, University of Aveiro, 3810-Aveiro, Portugal
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The transformation of kaolinite to halloysite-7 Å was identified in the kaolin deposit of São Vicente de Pereira (SVP), using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Both the 02, 1̄ and 13̄, 13 reflections show changes in the XRD patterns along the kaolinite to halloysite-7 Å transition, and the FTIR spectra show changes corresponding to both OH and Si-O-stretching bands and Al-O-Si-bending vibrations. The interlayer water content in the kaolinite structure increases during transition. The two-layer periodicity of well-ordered kaolinite and rolling up of kaolinite plates are observed using high-resolution transmission electron microscopy (HRTEM). Long and short tubes exhibit halloysite-7 Å. No structural Fe was found in the kaolinite samples. Analytical electron microscopy (AEM) indicates no substitution of Al3+ for Si4+. The Si/Al ratio shows values of ∼1 for the kaolinite and rolled kaolinite plates. The 27Al magic angle spinning neutron magnetic resonance (MAS-NMR) spectra display a resonance centered at ∼1 ppm, assigned to six-coordinated aluminum. The transformation of kaolinite to halloysite-7 Å is controlled by surface reaction.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

References

Anand, R.R. Gilkes, R.J. Armitage, T.M. and Hillyer, J.W., 1985 Feldspar weathering in a lateritic saprolite Clays and Clay Minerals 33 3143 10.1346/CCMN.1985.0330104.CrossRefGoogle Scholar
Bailey, S.W. and Bailey, S.W., 1988 Polytypism of 1:1 layer silicates Hydrous Phyllosilicates (exclusive of Micas) Washington, D.C. Mineralogical Society of America 927 10.1515/9781501508998-007 Reviews in Mineralogy, 19 .CrossRefGoogle Scholar
Bailey, S.W., Farmer, V.C. and Tardy, Y., 1990 Halloysite—a critical assessment Proceedings of 9th International Clay Conference, Strasbourg Strasbourg, France Sciences Géologiques Mémoire 8998 85.Google Scholar
Banfield, J.F. and Eggleton, R.A., 1990 Analytical transmission electron microscope studies of plagioclase, muscovite and K-feldspar weathering Clays and Clay Minerals 38 7789 10.1346/CCMN.1990.0380111.CrossRefGoogle Scholar
Bates, T.F. Hildebrand, F.A. and Swineford, A., 1950 Morphology and structure of endellite and halloysite American Mineralogist 6 237248.Google Scholar
Bobos, I. and Gomes, C., 1998 Greisen and post-greisen alteration in the kaolin deposit of São Vicente de Pereira (Portugal) Canadian Mineralogist 36 16211630.Google Scholar
Bobos, I. and Gomes, C. (1999) Hydrothermal alteration and kaolinization in the north western border of Ossa Morena zone. EUG 10, Abstract volume, 4. Cambridge Publications, 592 pp.Google Scholar
Bobos, I. and Gomes, C., 2000 Dissolution of K-feldspar into Si-Al gel and crystallization of halloysite identified in the kaolin deposit of São Vicente de Pereira (Portugal) Geologica Carpathica 51 4957.Google Scholar
Chaminé, H.I. Ribeiro, A. and Pereira, E., 1995 Cartografia geológica e estratigrafia da faixa precâmbrica do sector Espinho—Albergaria-A-Velha (Zona de Ossa-Morena). Faculdade de Ciências, Universidade do Porto Memoria 4 329333.Google Scholar
Churchman, G.J. and Gilkes, R.J., 1989 Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profiles Clay Minerals 24 579590 10.1180/claymin.1989.024.4.02.CrossRefGoogle Scholar
Costanzo, P.M. and Giese, R.F. Jr., 1985 Dehydration of synthetic hydrated kaolinite: a model for the dehydration of halloysite (10 Å) Clays and Clay Minerals 33 415423 10.1346/CCMN.1985.0330507.CrossRefGoogle Scholar
Costanzo, P.M. and Giese, R.F. Jr. and Clemency, C.V., 1984 Synthesis of a 10 Å hydrated kaolinite Clays and Clay Minerals 32 2935 10.1346/CCMN.1984.0320104.CrossRefGoogle Scholar
Eswaran, H. and Bin, W.C., 1978 A study of deep weathering profile on granite in peninsular Malaysia: Mineralogy of the clay, silt and sand fractions Soil Science Society of America Journal 42 149158 10.2136/sssaj1978.03615995004200010033x.CrossRefGoogle Scholar
Giese, R.F. Jr. and Bailey, S.W., 1988 Kaolin minerals: structures and stability Hydrous Phyllosilicates (exclusive of Micas) Washington, D.C. Mineralogical Society of America 2966 10.1515/9781501508998-008 Reveiws in Mineralogy, 19 .CrossRefGoogle Scholar
Gilkes, R.J. Anand, R.R. and Suddhiprakarn, A., 1986 How the microfabric of soils may be influenced by the structure and chemical composition of parent minerals Trans International Soil Science Conference, Hamburg 6 10931106.Google Scholar
Grim, R., 1967 Clay Mineralogy New York McGraw Hill 596 pp.Google Scholar
Hinckley, D.N., 1963 Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Honjo, G. Kitamura, N. and Mihama, K., 1954 A study of clay minerals by means of single-crystal electron diffraction diagram—the structure of tubular kaolin Clay Minerals Bulletin 2 133141 10.1180/claymin.1954.002.12.03.CrossRefGoogle Scholar
Jackson, M.L., 1975 Soil Chemical Analyses—Advanced Course Wisconsin Madison Published by the author.Google Scholar
Jiang, W.T. and Peacor, D.R., 1991 Transmission electron microscopic study of the kaolinisation of muscovite Clays and Clay Minerals 39 113 10.1346/CCMN.1991.0390101.CrossRefGoogle Scholar
Keller, W.D., 1978 Classification of kaolins exemplified by their textures in scanning electron microscopy Clays and Clay Minerals 26 120 10.1346/CCMN.1978.0260101.CrossRefGoogle Scholar
Kohyama, N. Fukushima, K. and Fukami, A., 1978 Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell Clays and Clay Minerals 26 2540 10.1346/CCMN.1978.0260103.CrossRefGoogle Scholar
Ma, C. and Eggleton, R.A., 1999 Surface layer types of kaolinite: A high resolution transmission electron microscopy study Clays and Clay Minerals 47 181191 10.1346/CCMN.1999.0470208.Google Scholar
Ma, C. FitzGerald, J.D. Eggleton, R.A. and Llewellyn, D.J., 1998 Analytical electron microscopy in clays and other phyllosilicates: Loss of elements from a 90-nm stationary beam of 300 KeV electrons Clays and Clay Minerals 46 301317 10.1346/CCMN.1998.0460309.CrossRefGoogle Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and Their X-ray identification London Mineralogical Society 197249.CrossRefGoogle Scholar
McBride, M.B., 1976 A critique of diffuse double layer models applied to colloid and surface chemistry Clays and Clay Minerals 24 598608.Google Scholar
Meunier, A. and Velde, B., 1979 Weathering mineral facies in altered granites: The importance of local small-scale equilibrium Mineralogical Magazine 43 261268 10.1180/minmag.1979.043.326.08.CrossRefGoogle Scholar
Newman, R.H. Childs, C.W. and Churchman, G.J., 1994 Aluminium co-ordination and structural disorder in halloysite and kaolinite by 27Al NMR spectroscopy Clay Minerals 29 305312 10.1180/claymin.1994.029.3.01.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosillicates by X-ray powder diffraction Clays and Clay Minerals 25 436450 10.1346/CCMN.1977.0250610.CrossRefGoogle Scholar
Plançon, A. and Zacharie, C., 1990 An expert system for the structural characterization of kaolinites Clay Minerals 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. and Snyder, R., 1988 The Hinckley index for kaolinites Clay Minerals 23 249260 10.1180/claymin.1988.023.3.02.CrossRefGoogle Scholar
Rand, B. and Melton, I.E., 1976 Particle interactions in aqueous kaolinite suspensions, I. Effect of pH and electrolyte upon the mode of particle interaction in homoionic sodium kaolinite suspensions Journal of Colloidal Interface Science 60 308320 10.1016/0021-9797(77)90290-9.CrossRefGoogle Scholar
Range, K.J. Range, A. Weiss, A., Heller, L. and Weiss, A., 1969 Fire clay type kaolinite or fire clay minerals? Experimental classification of kaolinite-halloysite minerals Proceedings International Clay Conference Tokyo, Volume 1 Jerusalem Israel University Press 313.Google Scholar
Ribeiro, A. Pereira, E. and Severo, L., 1980 Análise da deformação da zona de cisalhamento Porto-Tomar na transversal de Oliveira de Azeméis Comunicação de Servicio Geologico de Portugal 66 39.Google Scholar
Robertson, I.D. and Eggleton, R.A., 1991 Weathering of granitic muscovite to kaolinite and halloysite and plagioclase-derived kaolinite to halloysite Clays and Clay Minerals 39 113126 10.1346/CCMN.1991.0390201.CrossRefGoogle Scholar
Rocha, J. and Klinowski, J., 1990 29Si and 27Al magic-angle-spinning NMR studies of the thermal transformation of kaolinite Physics and Chemistry of Minerals 17 179186 10.1007/BF00199671.CrossRefGoogle Scholar
Rocha, J. and Pedrosa de Jesus, J.D., 1994 27A1 satellite transition MAS NMR spectroscopy of kaolinite Clay Minerals 29 287291 10.1180/claymin.1994.029.2.14.CrossRefGoogle Scholar
Singh, B., 1996 Why does halloysite roll?—A new model Clays and Clay Minerals 44 191197 10.1346/CCMN.1996.0440204.CrossRefGoogle Scholar
Singh, B. and Gilkes, R.J., 1992 An electron optical investigation of the alteration of kaolinite to halloysite Clays and Clay Minerals 40 212229 10.1346/CCMN.1992.0400211.CrossRefGoogle Scholar
Singh, B. and Mackinnon, I., 1996 Experimental transformation of kaolinite to halloysite Clays and Clay Minerals 44 825834 10.1346/CCMN.1996.0440614.CrossRefGoogle Scholar
Stoch, L. and Sikora, W., 1976 Transformation of micas in the process of kaolinization of granites and gneisses Clays and Clay Minerals 24 156162 10.1346/CCMN.1976.0240402.CrossRefGoogle Scholar
Stumm, W., 1992 Chemistry of the Solid-Water Interface New York Wiley & Sons 346 pp.Google Scholar
Sunagawa, I. and Sunagawa, I., 1975 Morphology of minerals Morphology of Crystals Tokyo Terra Science Publishes Co. 509–587.Google Scholar
Tari, G. Bobos, I. Gomes, C. and Ferreira, J.M., 1999 Modification of charge density during the kaolinite to hallosyite-7 Å transformation Journal of Colloid Interface Surface 209 360366 10.1006/jcis.1998.5917.CrossRefGoogle Scholar
Wada, K., 1961 Lattice expansion of kaolin minerals by treatment with potassium acetate American Mineralogist 46 7891.Google Scholar
Wilke, B.S. Schwertmann, U. and Murad, E., 1978 An occurrence of polymorphic halloysite in granite saprolite of the Bayerischer Wald, Germany Clay Minerals 13 6777 10.1180/claymin.1978.013.1.06.CrossRefGoogle Scholar
Zvyagin, B.B., 1967 Electron Diffraction Analysis of Clay Minerals Structures New York Plenum Press 10.1007/978-1-4615-8612-8 364 pp.CrossRefGoogle Scholar