Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T18:39:19.137Z Has data issue: false hasContentIssue false

Kaolinite Particle Sizes in the <2 µm Range Using Laser Scattering

Published online by Cambridge University Press:  28 February 2024

Ian D. R. Mackinnon
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia QLD 4072 Australia
Philippa J. R. Uwins
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia QLD 4072 Australia
Anya Yago
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia QLD 4072 Australia
David Page
Affiliation:
Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia QLD 4072 Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Clay Minerals Society Source Clay kaolinites, Georgia KGa-1 and KGa-2, have been subjected to particle size determinations by 1) conventional sedimentation methods, 2) electron microscopy and image analysis, and 3) laser scattering using improved algorithms for the interaction of light with small particles. Particle shape, size distribution, and crystallinity vary considerably for each kaolinite. Replicate analyses of separated size fractions showed that in the <2 µm range, the sedimentation/centrifugation method of Tanner and Jackson (1947) is reproducible for different kaolinite types and that the calculated size ranges are in reasonable agreement with the size bins estimated from laser scattering. Particle sizes determined by laser scattering must be calculated using Mie theory when the dominant particle size is less than ∼5 µm. Based on this study of two well-known and structurally different kaolinites, laser scattering, with improved data reduction algorithms that include Mie theory, should be considered an internally consistent and rapid technique for clay particle sizing.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Allen, T., 1981 Particle Size Measurement 3 London Chapman and Hall 10.1007/978-1-4899-3063-7.CrossRefGoogle Scholar
Bayvel, L. P. and Jones, A. R., 1981 Electromagnetic Scattering and its Applications London Applied Science 10.1007/978-94-011-6746-8.CrossRefGoogle Scholar
Brindley, G. W., Kao, C.-C. Harrison, J. L., Lipsicas, M. and Raythatha, R., 1986 Relation between structural disorder and other characteristics of kaolinites and dickites Clays & Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.CrossRefGoogle Scholar
Brown, D. J. and Felton, P. G., 1985 Direct measurement of concentration and size for particles of different shapes using laser light diffraction Chem. Eng. Res. Des. 63 125134.Google Scholar
Cooper, L. R., Haverland, R. L., Hendricks, D. M. and Kni-sel, W. G., 1984 Microtrac particle-size analyzer: An alternative particle-size determination method for sediment and soils Soil Science 138 138146 10.1097/00010694-198408000-00007.CrossRefGoogle Scholar
Cornillault, J., 1972 Particle size analyser Applied Optics 11 265268 10.1364/AO.11.000265.CrossRefGoogle Scholar
De Boer, G B J de Weerd, C., Thoenes, D. and Goossens, H. W. J., 1987 Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering Part. Charact. 4 1419 10.1002/ppsc.19870040104.CrossRefGoogle Scholar
Dodge, L. G., 1984 Calibration of the Malvern particle sizer App. Optics 23 24152419 10.1364/AO.23.002415.CrossRefGoogle ScholarPubMed
Dodge, L. G., 1987 Comparison of the performance of drop-sizing instruments App. Optics 26 13281341 10.1364/AO.26.001328.CrossRefGoogle ScholarPubMed
Fripiat, J. J. and van Olphen, H., 1979 Data Handbook for Clay Materials and other Non-metallic Minerals New York Pergamon Press.Google Scholar
Gahwiller, C., 1980 A new method for the rapid determination of the averaged size and an index of polydispersity of submicron particles in liquids using laser light-scattering spectroscopy Powder Technology 25 1113 10.1016/0032-5910(80)87002-1.CrossRefGoogle Scholar
Hassanipak, A. A. and Eslinger, E., 1985 Mineralogy, crystallinity, O18/O16, and D/H of Georgia kaolins Clays & Clay Minerals 33 99106 10.1346/CCMN.1985.0330203.CrossRefGoogle Scholar
Hinckley, D. N., 1963 Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Georgia Clays & Clay Minerals 11 229235 10.1346/CCMN.1962.0110122.CrossRefGoogle Scholar
Lombardi, G., Russell, J. D. and Keller, W. D., 1987 Compositional and structural variations in the size fractions of a sedimentary and hydrothermal kaolin Clays & Clay Minerals 35 321335 10.1346/CCMN.1987.0350501.CrossRefGoogle Scholar
McCave, I. N., Bryant, R. J., Cook, H. F. and Coughanowr, C. A., 1986 Evaluation of a laser-diffraction-size analyzer for use with natural sediments J. Sed. Petrol. 56 561564 10.1306/212F89CC-2B24-11D7-8648000102C1865D.CrossRefGoogle Scholar
Mie, G., 1908 Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen Ann. Physik 25 377 10.1002/andp.19083300302.CrossRefGoogle Scholar
Miller, B. V. and Lines, R. W., 1988 Recent advances in particle size measurements: A critical review CRC Critical Reviews in Analytical Chemistry 20 75116 10.1080/00078988808048808.CrossRefGoogle Scholar
Murray, H. H. and Lyons, S. C., 1956 Correlation of paper-coating quality with degree of crystal perfection of kaolinite Clays & Clay Minerals 4 3140 10.1346/CCMN.1955.0040105.CrossRefGoogle Scholar
Olivier, J. P. and Sennett, P., 1973 Particle size-shape relationships in Georgia sedimentary kaolins. II Clays & Clay Minerals 21 403412 10.1346/CCMN.1973.0210516.CrossRefGoogle Scholar
Plancon, A. and Zacherie, C., 1990 An expert system for the structural characterization of kaolinites Clay Miner. 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Pugh, D. G., 1987 Analysis of materials in the 0.12–300 micron range (using Mie and Fraunhofer theories) Curr. Aware. Part. Technol. 20 243251.Google Scholar
Tanner, C. B. and Jackson, M. L., 1947 Nomographs of sedimentation times for soil particles under gravity or centrifugal acceleration Soil Sci. Soc. Amer. Proc. 11 6065.Google Scholar
Tettenhorst, R. T. and Corbato, C. E., 1986 Properties of a sized and ground kaolinite Clay Miner. 21 971976 10.1180/claymin.1986.021.5.11.CrossRefGoogle Scholar
Tuzun, U. and Farhadpour, F. A., 1985 Comparison of light scattering with other techniques for particle size measurement Part. Charact. 2 104112 10.1002/ppsc.19850020119.CrossRefGoogle Scholar