Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:21:20.528Z Has data issue: false hasContentIssue false

Ion Selectivity by Weathered Micas as Determined by Electron Microprobe Analysis

Published online by Cambridge University Press:  01 July 2024

J. le Roux*
Affiliation:
Virginia Polytechnic Institute, Blacksburg, Va. 24061, U.S.A.
C. I. Rich
Affiliation:
Virginia Polytechnic Institute, Blacksburg, Va. 24061, U.S.A.
P. H. Ribbe*
Affiliation:
Virginia Polytechnic Institute, Blacksburg, Va. 24061, U.S.A.
*
Present address: Department of Soil Science, University of Natal, Pietermaritzburg, South Africa.
Research Associate in Agronomy. Professor of Agronomy, and Associate Professor of Mineralogy, respectively.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electron probe micro-analysis studies on individual particles (40–60 mesh) of weathered micas treated with solutions containing equivalent amounts of Rb and Sr showed partial segregation of these elements. Rb was concentrated at particle and step edges, at cracks, and, in the case of partially K-depleted biotite, at boundaries of vermiculite and mica zones (“wedge zones”). The scarcity of wedge zones in mica from which nearly all of the K had been removed reduced the overall selectivity for Rb. The restricted exchange of interlayer Mg ions from vermiculite-like zones by a mixed Rb-Sr solution was observed in earlier studies with these micas. The proposed explanation for these results was a closing down of the interlayer space at the edge of the particle due to Rb concentration in these positions. This explanation is confirmed by the present study.

Résumé

Résumé

Des études d’analyses par microsonde électronique sur des particules individuelles (40–60 mesh) de micas altérés à l’air, traitées avec des solutions contenant des quantités équivalentes de Rb et Sr, ont montré une ségrégation partielle de ces éléments. Rb était concentré aux bords de la particule et de la couche, aux cassures et, dans le cas de biotite déficiente en K, aux limites de vermiculite et de mica (zones intercalaires “wedge”). La rareté des zones “wedge” dans le mica qui a presque totalement perdu K, réduit la sélectivité d’ensemble pour Rb. L’échange restreint des ions Mg entre les couches à partir des zones comme la vermiculite par une solution mixte Rb-Sr a été observé au cours d’études antérieures sur ces micas. L’explication proposée pour ces résultats était une fermeture de l’espace entre les couches au bord de la particule dû à la concentration Rb dans ces positions. Cette explication est confirmée par l’étude actuelle.

Kurzreferat

Kurzreferat

Elektronenmikroskopische Studien von Einzelteilchen (Siebfeinheit 40–60) verwitterter Glimmer, die mit äquivalente Mengen von Rb und Sr enthaltenden Lösungen behandelt wurden, zeigten eine teilweise Abscheidung dieser Elemente. Das Rb war konzentriert an Teilchen- und Stufenkanten, an Rissen, und, im Fall von teilweise an Kalium verarmtem Biotit, an den Grenzen von Vermiculit- und Glimmerzonen (“Keilzonen”). Der Mangel an Keilzonen im Glimmer aus welchem beinahe das gesamte K entfernt worden war, verminderte die Gesamtselektivität für Rb. Der beschränkte Austausch von Zwischenschicht-Mg-Ionen aus vermiculitartigen Zonen durch eine gemischte Rb-Sr Lösung wurde bereits in früheren Arbeiten mit diesen Glimmern beobachtet. Die vorgeschlagene Erklärung dieser Ergebnisse war die Schliessung des Zwischenschichtraumes an der Teilchenkante infolge einer Konzentration von Rb in diesen Stellungen. Diese Erklärung wird durch die gegenwärtige Arbeit bekräftigt.

Резюме

Резюме

Изучение с помощью электронного микрозонда отдельных частиц (40–60 меш) выветрелых слюд, обработанных растворами, содержащими эквивалентные количества Rb и Sr, обнаружило частичное обособление этих элементов. Rb концентрировался на гранях частиц и ступеней роста, в трещинках, а в биотите с дефицитом калия — на границах вермикулитовых и слюдяных зон («вклиненные» зоны). Очень незначительное количество подобных зон в слюде, из которой удалены почти все ионы K, понижает общую селективность в отношении Rb. Ограниченный обмен межслоевых ионов Мg вермикулитоподобных зон при обработке смешанным Rb-Sr раствором наблюдался на ранних стадиях обработки слюд. Объяснение полученных результов заключается в том, что происходит уменьшение межслоевого промежутка на краях частиц вследствие концентрации на них Rb.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

Footnotes

*

Support from NSF Grant GA-1373 and the Molecular Structures Laboratory at VPI is gratefully acknowledged.

References

Helfferich, F. (1962) lon Exchange: McGraw-Hill, New York.Google Scholar
Hill, D. E. and Sawhney, B. L. (1969) Electron microprobe analysis of thin sections of soil to observe loci of cation exchange: Soil Sei. Soc. Am. Proc.: 33, 531534.CrossRefGoogle Scholar
Jackson, M. L. (1958) Soil Chemical Analysis: Prentice- Hal], Englewood Cliffs, New Jersey .Google Scholar
Kittrick, J. A. (1966) Forces involved in ion fixation by vermiculite: Soil Sci. Soc. Am. Proc. 30, 801803.CrossRefGoogle Scholar
Le Roux, J. and Rich, C. I. (1969) Ion selectivity of micas as influenced by degree of potassium depletion: Soil Sci. Soc. Am. Proc. 33, 684690.CrossRefGoogle Scholar
Raman, K. V. and Jackson, M. L. (1964) Vermiculite surface morphology: Clays and Clay Minerals 12, 423429.Google Scholar
Rausell-Colom, J. A., Sweatman, T. R., Wells, C. B. and Norrish, K. (1965) Studies on the artificial weathering of mica, pp. 4072. In Experimental Pedology, (Edited by Hallsworth, E. G. and Crawford, D. V.) Butterworths, London.Google Scholar
Reichenbach, H. G. von (1968) Cation exchange in interlay ers of expansible layer silicates: Clay Minerals 7, 331341.CrossRefGoogle Scholar
Reichenbach, H. G. von and Rich, C. I. (1968) Preparation of dioctahedral vermiculite from muscovite and subsequent exchange properties: Trans Intern. Congr. Soil Sci., 9th (Adelaide) 1, 709719.Google Scholar
Rich, C. I. and Black, W. R. (1964) Potassium exchange as affected by cation size, pH, and mineral structure: Soil Sci. 97, 384390.CrossRefGoogle Scholar
Smith, J. V. and Ribbe, P. H. (1966) X-ray emission microanalysis of rock-forming minerals III. Alkali feldspars: J. Geol. 74, 197216.CrossRefGoogle Scholar
Sunagawa, I. (1964) Growth spirals in phogopite crystals: Am. Mineralogist 49, 14271434.Google Scholar
Walker, G. F. (1963) The cation exchange reaction in vermiculite: Proc. Intern. Clay Conf. I, 177181.Google Scholar