Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T03:28:02.998Z Has data issue: false hasContentIssue false

Investigating the Anisotropic Features of Particle Orientation in Synthetic Swelling Clay Porous Media

Published online by Cambridge University Press:  01 January 2024

Fabien Hubert*
Affiliation:
Université de Poitiers, CNRS IC2MP-HydrASA UMR 7285, 86022 Poitiers cedex, France
Isabelle Bihannic
Affiliation:
CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR7360, Vandoeuvre lès Nancy, F-54500, France Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR7360, Vandoeuvre lès Nancy, F-54500, France
Dimitri Prêt
Affiliation:
Université de Poitiers, CNRS IC2MP-HydrASA UMR 7285, 86022 Poitiers cedex, France
Emmanuel Tertre
Affiliation:
Université de Poitiers, CNRS IC2MP-HydrASA UMR 7285, 86022 Poitiers cedex, France
Benoit Nauleau
Affiliation:
Université de Poitiers, CNRS IC2MP-HydrASA UMR 7285, 86022 Poitiers cedex, France
Manuel Pelletier
Affiliation:
CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR7360, Vandoeuvre lès Nancy, F-54500, France Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR7360, Vandoeuvre lès Nancy, F-54500, France
Bruno Demé
Affiliation:
Institut Laue-Langevin, 6 rue Jules Horowitz, BP156, F-38042 Grenoble, France
Eric Ferrage
Affiliation:
Université de Poitiers, CNRS IC2MP-HydrASA UMR 7285, 86022 Poitiers cedex, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study investigated the anisotropy in the orientation of particles in synthetic swelling clay media prepared from the sedimentation of particle-sized fractions of vermiculite. The different size fractions (<0.1, 0.1–0.2, 1–2, and 10–20 μm) were chosen because they represent the wide range of particle sizes of swelling clay minerals encountered in natural environments. Small-angle neutron scattering (SANS) and neutron diffraction measurements allowed the characteristic scattering/diffraction features to be derived and the quantitative information about the particle orientation distributions along two directions with respect to the sedimentation plane to be extracted. The results obtained confirmed that the increase in particle size was associated with the development of a random orientation for the particles, whereas the hydration state had a negligible impact on the organization of the porous media. For finer vermiculite particles, the rocking curves demonstrated an anisotropy of the systems that is similar to those reported previously on natural montmorillonite minerals. This result suggests that the location of the layer charge has little or no impact on the anisotropy features of particle orientation. For the coarsest fraction (10–20 μm), quantitative information about the particle orientation revealed that the relative proportion of the isotropic contribution represents up to 85% of the material. The anisotropy in the 2D SANS patterns revealed a pore-network anisotropy that was consistent with the particle size.

Type
Article
Copyright
Copyright © Clay Minerals Society 2013

References

Arguelles, A. Leoni, M. Blanco, J.A. and Marcos, C., 2010 Semi-ordered crystalline structure of the Santa Olalla vermiculite inferred from X-ray powder diffraction American Mineralogist 95 126134.CrossRefGoogle Scholar
Bihannic, I. Tchoubar, D. Lyonnard, S. Besson, G. and Thomas, F., 2001 X-ray scattering investigation of swelling clay fabric. 1—the dry state Journal of Colloid and Interface Science 240 211218.CrossRefGoogle Scholar
Bihannic, I. Delville, A. Deme, B. Plazanet, M. Villieras, F. Michot, L.J., Liyuan, L. Rinaldi, R. and Schober, H., 2009 Clay swelling: New insights from neutron-based techniques Neutron Applications in Earth, Energy and Environmental Sciences 521546.CrossRefGoogle Scholar
Bihannic, I. Baravian, C. Duval, J.F.L. Paineau, E. Meneau, F. Levitz, P. de Silva, J.P. Davidson, P. and Michot, L.J., 2010 Orientational order of colloidal disk-shaped particles under shear flow conditions: a rheological-small-angle X-ray scattering study Journal of Physical Chemistry B 114 1634716355.CrossRefGoogle ScholarPubMed
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Caillaud, J. Proust, D. Philippe, S. Fontaine, C. and Fialin, M., 2009 Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals Geoderma 149 199208.CrossRefGoogle Scholar
Cebula, D.J. Thomas, R.K. Middleton, S. Ottewill, R.H. and White, J.W., 1979 Neutron-diffraction from clay-water systems Clays and Clay Minerals 27 3952.CrossRefGoogle Scholar
Coelho, D. Thovert, J.F. and Adler, P.M., 1997 Geometrical and transport properties of random packings of spheres and aspherical particles Physical Review E: Statistical, Nonlinear, and Soft Matter Physics 55 19591978.CrossRefGoogle Scholar
Czurda, K., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Clay liners and waste disposal Handbook of Clay Science 693702.CrossRefGoogle Scholar
de Haro, M.C.J. Perez-Rodriguez, J.L. Poyato, J. Perez-Maqueda, L.A. Ramirez-Valle, V. Justo, A. Lerf, A. and Wagner, F.E., 2005 Effect of ultrasound on preparation of porous materials from vermiculite Applied Clay Science 30 1120.CrossRefGoogle Scholar
de la Calle, C. Pezerat, H. and Gasperin, M., 1977 Problèmes d’ordre désordre dans les vermiculites-structure du minéral calcique hydraté à 2 couches Journal de Physique 38 128133.Google Scholar
de la Calle, C. Suquet, H. Dubernat, J. and Pezerat, H., 1978 Mode d’empilement des feuillets dans les vermiculites hydratées à ‘deux couches’ Clay Minerals 13 275297.CrossRefGoogle Scholar
de la Calle, C. Suquet, H. and Pezerat, H., 1985 Vermiculites hydratées à une couche Clay Minerals 20 221230.CrossRefGoogle Scholar
de la Calle, C. Suquet, H., Bailey, S.W., 1988 Vermiculite Hydrous Phyllosilicates (Exclusive of Micas) Washington, D.C., USA Mineralogical Society of America 455496.CrossRefGoogle Scholar
Devineau, K. Bihannic, I. Michot, L. Villieras, F. Masrouri, F. Cuisinier, O. Fragneto, G. and Michau, N., 2006 In situ neutron diffraction analysis of the influence of geometric confinement on crystalline swelling of montmorillonite Applied Clay Science 31 7684.CrossRefGoogle Scholar
Dixon, J.B. and Weed, S.B., 1989 Minerals in Soil Environments USA, Madison, Wisconsin, USA Soil Science Society of America Inc..CrossRefGoogle Scholar
Dohrmann, R. Ruping, K.B. Kleber, M. Ufer, K. and Jahn, R., 2009 Variation of preferred orientation in oriented clay mounts as a result of sample preparation and composition Clays and Clay Minerals 57 686694.CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C., 1990 X-ray Diffraction by Disordered Lamellar Structures: Theory and Applications to Microdivided Silicates and Carbons Berlin Springer-Verlag.CrossRefGoogle Scholar
Drits, V.A. Środoń, J. and Eberl, D.D., 1997 XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation Clays and Clay Minerals 45 461475.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Malikova, N. Plançon, A. Sakharov, B.A. and Drits, V.A., 2005 New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 00l reflections Chemistry of Materials 17 34993512.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties American Mineralogist 90 13581374.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Michot, L.J. and Robert, J.L., 2010 Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 1. Results from X-ray diffraction profile modeling Journal of Physical Chemistry C 114 45154526.CrossRefGoogle Scholar
Ferrage, E. Sakharov, B.A. Michot, L.J. Delville, A. Bauer, A. Grangeon, S. Frapper, G. Jimenez-Ruiz, M. and Cuello, G.J., 2011 Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Towards a precise coupling between molecular simulations and diffraction data Journal of Physical Chemistry C 115 18671881.CrossRefGoogle Scholar
González García, F. and García Ramos, G., 1960 On the genesis and transformations of vermiculite Transactions of the 7th International Congress on Soil Science 4 482491.Google Scholar
Guinier, A. and Fournet, G., 1951 Small-angle Scattering of X-rays New York John Wiley & Sons.Google Scholar
Hall, P.L. Harrison, R. Hayes, M.H.B. Tuck, J.J. and Ross, D.K., 1983 Particle orientation distributions and stacking arrangements in size-fractionated montmorillonite measured by neutron and X-ray diffraction Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 79 16871700.CrossRefGoogle Scholar
Harris, G.L. Nicholls, P.H. Bailey, S.W. Howse, K.R. and Mason, D.J., 1994 Factors influencing the loss of pesticides in drainage from a cracking clay soil Journal of Hydrology 159 235253.CrossRefGoogle Scholar
Harvey, C.C. Lagaly, G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Conventional applications Handbook of Clay Science Amsterdam Elsevier 501540.CrossRefGoogle Scholar
Hubert, F. Caner, L. Meunier, A. and Ferrage, E., 2012 Unraveling complex >2 μm clay mineralogy from soils using X-ray diffraction profile modeling on particle-size sub-fractions: Implications for soil pedogenesis and reactivity American Mineralogist 97 384398.CrossRefGoogle Scholar
Inigo, A.C. Tessier, D. and Pernes, M., 2000 Use of X-ray transmission diffractometry for the study of clay-particle orientation at different water contents Clays and Clay Minerals 48 682692.CrossRefGoogle Scholar
Itakura, Y. Bertram, W.K. and Knott, R.B., 2005 The nanoscale structural response of natural kaolinite clayey soil subjected to uniaxial compression Applied Clay Science 29 114.CrossRefGoogle Scholar
Jin, L.X. Rother, G. Cole, D.R. Mildner, D.F.R. Duffy, C.J. and Brantley, S.L., 2011 Characterization of deep weathering and nanoporosity development in shale—a neutron study American Mineralogist 96 498512.CrossRefGoogle Scholar
Johansen, T.A. Jakobsen, M. and Ruud, B.O., 2002 Estimation of the internal structure and anisotropy of shales from borehole data Journal of Seismic Exploration 11 363381.Google Scholar
Johansen, T.A. Ruud, B.O. and Jakobsen, M., 2004 Effect of grain scale alignment on seismic anisotropy and reflectivity of shales Geophysical Prospecting 52 133149.CrossRefGoogle Scholar
Knudsen, K.D. Fossum, J.O. Helgesen, G. and Haakestad, M.W., 2004 Small-angle neutron scattering from a nanolayered synthetic silicate Physica B—Condensed Matter 352 247258.CrossRefGoogle Scholar
Lemaire, B.J. Panine, P. Gabriel, J.C.P. and Davidson, P., 2002 The measurement by SAXS of the nematic order parameter of laponite gels Europhysics Letters 59 5561.CrossRefGoogle Scholar
Lonardelli, I. Wenk, H.R. and Ren, Y., 2007 Preferred orientation and elastic anisotropy in shales Geophysics 72 D33D40.CrossRefGoogle Scholar
Marcos, C. Arguelles, A. Ruíz-Conde, A. Sánchez-Soto, P.J. and Blanco, J.A., 2003 Study of the dehydration process of vermiculites by applying a vacuum pressure: Formation of interstratified phases Mineralogical Magazine 67 12531268.CrossRefGoogle Scholar
Méheust, Y. Knudsen, K.D. and Fossum, J.O., 2006 Inferring orientation distributions in anisotropic powders of nano-layered crystallites from a single two-dimensional WAXS image Journal of Applied Crystallography 39 661670.CrossRefGoogle Scholar
Méheust, Y. Dagois-Bohy, S. Knudsen, K.D. and Fossum, J.O., 2007 Mesoscopic structure of dry-pressed clay samples from small-angle X-ray scattering measurements Journal of Applied Crystallography 40 286291.CrossRefGoogle Scholar
Méring, J., 1949 L’interférence des rayons-x dans les systèmes à stratification désordonnée Acta Crystallographica 2 371377.CrossRefGoogle Scholar
Montarges-Pelletier, E. Bogenez, S. Pelletier, M. Razafitianamaharavo, A. Ghanbaja, J. Lartiges, B. and Michot, L.J., 2005 Synthetic allophane-like particles: Textural properties Colloids and Surfaces A: Physicochemical and Engineering Aspects 255 110.CrossRefGoogle Scholar
Morvan, M. Espinat, D. Lambard, J. and Zemb, T., 1994 Ultrasmall-angle and small-angle X-ray-scattering of smectite clay suspensions Colloids and Surfaces A—Physicochemical and Engineering Aspects 82 193203.Google Scholar
Perdigon-Aller, A.C. Aston, M. and Clarke, S.M., 2005 Preferred orientation in filtercakes of kaolinite Journal of Colloid and Interface Science 290 155165.CrossRefGoogle ScholarPubMed
Perdigon, A.C. Clarke, S.M. and Aston, M., 2007 Neutron diffraction study of the orientational order in filter cakes made of kaolinite under laminar and turbulent cross-flow Journal of Membrane Science 298 8091.CrossRefGoogle Scholar
Perez-Maqueda, L.A. Caneo, O.B. Poyato, J. and Perez-Rodriguez, J.L., 2001 Preparation and characterization of micron and submicron-sized vermiculite Physics and Chemistry of Minerals 28 6166.CrossRefGoogle Scholar
Perez-Maqueda, LA D Haro, M.C.J. Poyato, J. and Perez-Rodriguez, J.L., 2004 Comparative study of ground and sonicated vermiculite Journal of Materials Science 39 53475351.CrossRefGoogle Scholar
Plançon, A., 1980 The calculation of intensities diffracted by a partially oriented powder with a layer structure Journal of Applied Crystallography 13 524528.CrossRefGoogle Scholar
Prð, D. Sammartino, S. Beaufort, D. Fialin, M. Sardini, P. Cosenza, P. and Meunier, A., 2010 A new method for quantitative petrography based on image processing of chemical element maps: Part II. Semi-quantitative porosity maps superimposed on mineral maps American Mineralogist 95 13891398.Google Scholar
Prð, D. Sammartino, S. Beaufort, D. Meunier, A. Fialin, M. and Michot, L.J., 2010 A new method for quantitative petrography based on image processing of chemical element maps: Part I. Mineral mapping applied to compacted bentonites American Mineralogist 95 13791388.Google Scholar
Reynolds, R.C., 1986 The Lorentz-polarization factor and preferred orientation in oriented clay aggregates Clays and Clay Minerals 34 359367.CrossRefGoogle Scholar
Ross, D.K. Hall, P.L., Stucki, J.W. and Banwart, W.L., 1980 Neutron scattering methods of investing clay systems Advanced Chemical Methods for Soil and Clay Minerals Research Boston, USA D. Reidel Publishing Company 93163.CrossRefGoogle Scholar
Tertre, E. Ferrage, E. Bihannic, I. Michot, L.J. and Pret, D., 2011 Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 2: Understanding the effect of the m/v ratio. Implications for pore water composition and element transport in natural media Journal of Colloid and Interface Science 363 334347.CrossRefGoogle Scholar
Tertre, E. Pret, D. and Ferrage, E., 2011 Influence of the ionic strength and solid/solution ratio on Ca(II)-for-Na exchange on montmorillonite. Part 1: Chemical measurements, thermodynamic modeling and potential implications for trace elements geochemistry Journal of Colloid and Interface Science 353 248256.CrossRefGoogle ScholarPubMed
Tertre, E. Hubert, F. Bruzac, S. Pacreau, M. Ferrage, E. and Prð, D., 2013 Ion-exchange reactions on clay minerals coupled with advection/dispersion processes. Application to Na+/Ca+ exchange on vermiculite: Reactive-transport modeling, batch and stirred flow-through reactor experiments Geochimica et Cosmochimica Acta 112 119.CrossRefGoogle Scholar
Tessier, D. Bouzigues, B. Favrot, J.C. and Valles, V., 1992 Influence of decimetric microrelief on clay texture evolution of hydromorphic soils of the Garonne river—differentiation of vertical and prismatic structures Comptes Rendus de L’Academie des Sciences Serie II 315 10271032.Google Scholar
Vasseur, G. Djeranmaigre, I. Grunberger, D. Rousset, G. Tessier, D. and Velde, B., 1995 Evolution of structural and physical parameters of clays during experimental compaction Marine and Petroleum Geology 12 941954.CrossRefGoogle Scholar
Voltolini, M. Wenk, H.R. Mondol, N.H. Bjorlykke, K. and Jahren, J., 2009 Anisotropy of experimentally compressed kaolinite-illite-quartz mixtures Geophysics 74 1323.CrossRefGoogle Scholar
Wiewióra, A. Pérez-Rodríguez, J.L. Perez-Maqueda, L.A. and Drapala, J., 2003 Particle size distribution in sonicated high- and low-charge vermiculites Applied Clay Science 24 5158.CrossRefGoogle Scholar
Zou, R.P. and Yu, A.B., 1996 Evaluation of the packing characteristics of mono-sized non-spherical particles Powder Technology 88 7179.CrossRefGoogle Scholar