Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T20:58:55.664Z Has data issue: false hasContentIssue false

Interstratification in Malawi Vermiculite: Effect of Bi-Ionic K-Mg Solutions

Published online by Cambridge University Press:  02 April 2024

Jose-Luis Martin de Vidales
Affiliation:
Departamento de Química Agrícola, Geología y Geoquímica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
Eladio Vila
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano 113, 28006 Madrid, Spain
Antonio Ruiz-Amil
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano 113, 28006 Madrid, Spain
Cristina de la Calle
Affiliation:
Instituto de Ciencia de Materiales, C.S.I.C., Serrano 113, 28006 Madrid, Spain Laboratoire de Réactivité de Surface et Structure, URA 1106, CNRS, Université P. et M. Curie, 4, Place Jussieu, Tour 54–55, 2ème Étage, 75252 Paris Cédex 05, France
Charles-Henri Pons
Affiliation:
Laboratoire de Cristallographie, Université d′Orléans, CNRS U.A. 810, B.P. 6759, Rue de Chartres, 45067 Orléans, Cédex 2, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The conversion of Malawi vermiculite into K-vermiculite by treatment with bi-ionic K-Mg solutions of 1 N total ion concentration (KCl and MgCl2 mixed solutions of ionic strength equal to 0.5) was studied by following the 00l X-ray powder diffraction (XRD) reflections. Flakes of Mg-saturated samples were treated at 160°C during 24 hr with bi-ionic solutions, with the K concentration varying from zero to pure 1 N KCl solution. The K-Mg interlayer exchange began at a critical value xK = .0196 (K/Mg = 1/100) of the molar fraction of K in the solution. Above the critical concentration and extending to pure 1 N KCl, the XRD diagrams were characteristic of a 10-Å/14-Å interstratification that had a marked tendency towards regularity. Experiments with KCl and MgCl2 mixed solutions of ionic strength equal to 0.75 and 1.0 showed that the exchange began at the same critical value xK as the experiments with ionic strength equal to 0.5, if the K added was equivalent. X-ray fluorescence analysis further showed that the amount of K adsorbed was proportional to the molar fraction xK and to the proportion of K-saturated layers (10 Å) in the interstratification. To explain the mechanism of this quasi-regular interstratification, a crystallochemical rather than a thermodynamic mechanism is proposed.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Bailey, S. W., 1982 Nomenclature for regular interstrati-fication Clay Miner. 17 243248.CrossRefGoogle Scholar
Basset, W. A., 1959 The origin of vermiculite at Libby Amer. Mineral. 35 590595.Google Scholar
Boettcher, A. L., 1966 Vermiculite, hydrobiotite and bio-tite in the Rainy Creek igneous complex near Libby, Montana Clay Miner. 6 283296.CrossRefGoogle Scholar
Brindley, G. W. and Gillery, F. M., 1956 X-ray identification of chlorite species Amer. Mineral. 41 169181.Google Scholar
Brindley, G. W., Zalba, P. E. and Bethke, C. M., 1983 Hydrobiotite, a regular 1:1 interstratification of biotite and vermiculite layers Amer. Mineral. 68 420425.Google Scholar
de la Calle, C., Suquet, H. and Pons, C. H., 1988 Stacking order in a 14.3-A Mg-vermiculite Clays & Clay Minerals 36 481490.CrossRefGoogle Scholar
Farmer, V. C., Russell, J. D., Machardy, W. J., Newman, A. C. D. Ahlrich, J. L. and Rimsaite, J. Y. H., 1971 Evidence for loos of octahedral iron from oxidised biotites and vermiculites Mineral. Mag. 38 137.CrossRefGoogle Scholar
Giese, R. F., 1971 Hydroxyl orientation in muscovite as indicated by electrostatic calculations Science 172 263264.CrossRefGoogle Scholar
Guinier, A., 1964 Théorie et Technique de la Radio-Cristallographie Paris Dunod.Google Scholar
Jackson, M. L., Hseung, Y., Corey, R. B., Evans, E. J. and Vanden Heuvel, R. C., 1952 Weathering sequence of clay size minerals in soils and sediments. II. Chemical weathering of layer silicate Soil Sci. Soc. Amer. Proc. 16 36.CrossRefGoogle Scholar
MacEwan, D. M. C. Ruiz-Amil, A., Brown, G. and Brown, G., 1961 Interstratified clay minerals The X-Ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 393445.Google Scholar
MacEwan, D MC Ruiz-Amil, A. and Gieseking, G. E., 1975 Interstratified clay minerals Soil Components. I. Inorganic Components New York Springer-Verlag 265334.CrossRefGoogle Scholar
Méring, J., 1949 Interference des rayons X dans les systèmes désordonnée Acta Crystallogr. 2 371377.CrossRefGoogle Scholar
Morel, S. W., 1955 Biotite in the basement complex of southern Nyasaland Geol. Mag. 92 241255.CrossRefGoogle Scholar
Newman, A. C. D. Brown, G. and Newman, A. C. D., 1987 The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Norrish, K. and Serratosa, J. M., 1973 Factors in the weathering of mica to vermiculite Proc. Int. Clay Confi, Madrid, 1972 Madrid Div. Ciencias C.S.I.C. 417432.Google Scholar
Pons, C. H., 1980 Mise en évidence des relations entre la structure et la texture dans les systèmes eau-smectites par la diffusion aux petits angles du rayonnement X synchrotron France Ph.D. thesis, Univ. Orleans, Orleans.Google Scholar
Pons, C. H., Pozzuoli, A., Rausell-Colom, J. A. and Calle, C. d. l., 1989 Mécanisme de passage de l’état hydraté à une couche à l’état zéro couche d’une vermiculite-Li de Santa Olalla Clay Miner. 24 479494.CrossRefGoogle Scholar
Radoslovich, E. W., 1960 The structure of muscovite Acta Cristallogr. 13 919925.CrossRefGoogle Scholar
Radoslovich, E. C., 1963 The cell dimensions and symmetry of layer-lattice silicates. IV. Interatomic forces Amer. Mineral. 48 7699.Google Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and their X-Ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Rhoades, J. D. and Coleman, N. T., 1967 Interstratification in vermiculite and biotite produced by potassium sorption. I. Evaluation by simple X-ray diffraction pattern inspection Soil Sci. Soc. Amer. Proc. 31 366372.CrossRefGoogle Scholar
Sato, M., 1965 Structure of interstratified (mixed-layer) minerals Nature 208 7080.CrossRefGoogle Scholar
Sawhney, B. L. and Bailey, S. W., 1967 Interstratification in vermiculite Clays & Clay Minerals, Proc. 15th Natl. Conference, Pittsburgh, Pennsylvania 1966 New York Pergamon Press 7584.Google Scholar
Sawhney, B. L., 1969 Regularity of interstratification as affected by charge density in layer silicates Soil Sci. Soc. Amer. Proc. 33 4246.CrossRefGoogle Scholar
Sawhney, B. L. and Reynolds, R. C., 1985 Interstratified clays as fundamental particles: A discussion Clays & Clay Minerals 33 559.CrossRefGoogle Scholar
Stephen, I., 1952 A study of rock weathering with reference of the Malvern Hills. Part I. Weathering of biotite and granite J. Soil Sci. 87 2033.CrossRefGoogle Scholar
Vila, E. and Ruiz-Amil, A., 1988 Computer program for analysing interstratified structures Powder Diffraction 3 711.CrossRefGoogle Scholar
Vila, E., Ruiz-Amil, A. and Martin de Vidales, J. L., 1988 Computer program for X-ray powder diffraction analysis Internal Report, C.S.I.C. Spain Madrid.Google Scholar
Walker, G. F., 1950 Trioctahedral minerals in the soil clays of northeast Scotland Mineral. Mag. 29 7284.Google Scholar
Weed, S. B. and Leonard, R. A., 1968 Effect of K-uptake by K-depleted micas on the basal spacing Soil Sci. Soc. Amer. Proc. 32 335340.CrossRefGoogle Scholar