Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T03:25:58.081Z Has data issue: false hasContentIssue false

Interpretation of Solid state 13C and 29Si Nuclear Magnetic Resonance Spectra of Kaolinite Intercalates

Published online by Cambridge University Press:  02 April 2024

John G. Thompson*
Affiliation:
Geology Department, James Cook University of North Queensland, Townsville, Queensland 4811, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

13C and 29Si nuclear magnetic resonance spectroscopy with magic-angle spinning bas been used to study the short-range ordering and bonding in the structures of intercalates of kaolinite with formamide, hydrazine, dimethyl sulfoxide (DMSO), and pyridine-N-oxide (PNO). The 29Si chemical shift indicated decreasing levels of bonding interaction between the silicate layer and the intercalate in the order: kaolinite: formamide (δ) = -91.9, ppm relative to tetramethylsilane), kaolinite: hydrazine (-92.0), kaolinite: DMSO (-93.1). The 29Si signal of the kaolinite:PNO intercalate (-92.1) was unexpectedly deshielded, possibly due to the aromatic nature of PNO. The degree of three-dimensional ordering of the structures was inferred from the 29Si signal width, with the kaolinite: DMSO intercalate displaying the greatest ordering and kaolinite: hydrazine the least. 13C resonances of intercalating organic molecules were shifted downfield by as much as 3 ppm in response to increased hydrogen bonding after intercalation, and in the kaolinite: DMSO intercalate the two methyl-carbon chemical environments were non-equivalent (δ = 43.7 and 42.5).

Резюме

Резюме

Спектроскопия ядерного магнетического резонанса 13C и 29Si использовалась для исследования короткодействующего упорядочения и связи в структуре прослоек каолинита с формамидом, гидразином, диметиловой сероокисью (ДМСО) и пиридино-N-окисью (ПNO). Химический сдвиг 29Si указывал на уменьшающиеся уровни взаимодействия связи между силикатными слоями и включаемым веществом в порядке: каолинит: формамид (δ = -91,9, частей на миллион по отношению к тетраметилсилану), каолинит: гидразин (-92,0), каолинит: ДМСО (-93,1). Сигнал 29Si прослойки каолинит: ПNO (-92,1) оказался неожиданно не защищенным, вероятно, в результате ароматической природы ПNO. Степень пространственного упорядочения структур была обнаружена при помощи ширины сигнала 29Si. Прослойка каолинит: ДМСО имела наибольшее упорядочение, а каолинит: гидразин—наименьшее. Резонансы 13C включаемых органических молекул перемещались вниз на величину порядка 3 частей на миллион в результате увеличивающейся водородной связи после прослаивания. В случае прослойки каолинит: ДМСО, две химические группы метил-углерод были неравновесны (δ = 43,7 и 42,5). [E.G.]

Resümee

Resümee

13C. und 29Si nuklearmagnetische Resonanzspektroskopie mit “Magic-angle Spinning” wurde verwendet, um die Nahordnung und die Bindung in den Strukturen von Wechsellagerungen von Kaolinit mit Formamid, Hydrazin, Dimethylsulfoxid (DMSO), und Pyridin-N-Oxid (PNO) zu undersuchen. Die chemische Verschiebung von 29 Si deutete auf abnehmende Niveaus der Bindungswechselwirkung zwischen der Silikatschicht und der Einlagerung hin, in der Reihenfolge: Kaolinit: Formamid (δ = -91,9, ppm in Vergleich zu Tetramethylsilan), Kaolinit: Hydrazin (-92,0), Kaolinit:DMSO (-93,1). Das 29Si-Signal der Kaolinit: PNO-Wechsellagerung (-92,1) war unerwartet wenig abgeschirmt, wahrscheinlich aufgrund der aromatischen Natur von PNO. Der Grad der dreidimensionalen Ordnung der Strukturen wurde aus der Breite des 29Si-Signals abgeleitet, wobei die Kaolinit: DMSO-Wechsellagerung den höchsten Ordnungsgrad und die Kaolinit: Hydrazin-Wechsellagerung den niedrigsten zeigte. Die 13C-Resonanzen der eingelagerten organischen Moleküle wurden bis zu 3 ppm nach geringerer magnetischer Feldstärke verschoben als Auswirkung einer zunehmenden Wasserstoffbindung nach der Einlagerung, und in der Kaolinit: DMSO-Wechsellagerung waren die zwei chemischen Methyl-Kohlenstoff-Milieus nicht gleich (S) = 43,7 und 42,5). [U.W.]

Résumé

Résumé

La spectroscopic de résonance magnétique nucléaire de 13C et de 29Si avec spin d'angle magique a été utilisée pour étudier l'ordre à court terme et les liaisons dans les structures d'intercalates de kaolinite avec la formamide, l'hydrazine, la sulphoxide diméthyle (DMSO), et l'oxide-N-pyridine (PNO). Le déplacement chimique de 29Si a indiqué des niveaux décroissants d'interaction de liaisons entre la couche silicate et l'intercalate dans l'ordre: kaolinite: formamide (δ) = -91,9, ppm relatives à la tétraméthylsilane), kaolinite: hydrazine (-92,0), kaolinite: DMSO (-93,1). Le signal 29Si de kaolinite: hydrazine (-92,1) était découvert de manière inattendue, possiblement à cause de la nature aromatique de PNO. Le degré d'ordre à trois dimensions des structures a été inféré à partir de la largeur du signal 29Si, avec l'intercalate kaolinite: DMSO montrant le plus grand ordre et la kaolinite: hydrazine, le plus petit. Les résonances 13C de molécules organiques intercalantes étaient deplacées vers le bas du champ par autant que 3 ppm en reponse à une liaison d'hydrogene augmentée après l'intercalation, et dans l'intercalate kaolinite:DMSO, les deux environements chimiques méthyl-carbone étaient non-équivalents (δ = 43,7 et 42,5). [D.J.]

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Adams, J. M., 1978 Unifying features relating to the 3D structures of some intercalates of kaolinite Clays & Clay Minerals 26 291295.CrossRefGoogle Scholar
Adams, J. M., 1983 Hydrogen atom positions in kaolinite by neutron profile refinement Clays & Clay Minerals 31 352356.CrossRefGoogle Scholar
Adams, J. M. and Jefferson, D. A., 1976 The crystal structure of a dickite: formamide intercalate Al2Si2O5(OH)4⋅ HCONH2 Acta Crystallogr B32 11801183.CrossRefGoogle Scholar
Adams, J. M., Reid, P. I., Thomas, J. M. and Walters, M. J., 1976 On the hydrogen atom positions in a kaolinite: formamide intercalate Clays & Clay Minerals 24 267269.CrossRefGoogle Scholar
Anet, F. A. L. and Yavari, I., 1976 Carbon-13 nuclear magnetic resonance study of pyridine N-oxide J. Org. Chem 41 35893591.CrossRefGoogle Scholar
Barron, P. F., Frost, R. L. and Skjemstad, J. O., 1983 29Si spin-lattice relaxation in aluminosilicates J. Chem. Soc. Chem. Commun 581583.CrossRefGoogle Scholar
Barron, P. F., Frost, R. L., Skjemstad, J. O. and Koppi, A. J., 1983 Detection of two silicon environments in kaolins via solid state 29Si NMR Nature 302 4950.CrossRefGoogle Scholar
Giese, R. F. Jr., 1975 Interlayer bonding in talc and pyrophyllite Clays & Clay Materials 23 165166.CrossRefGoogle Scholar
Hendricks, S. B. and Jefferson, M. E., 1938 Structures of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays Amer. Mineral 24 729771.Google Scholar
Hexem, J.G., Frey, M.H. and Opella, S.J., 1981 Influence of 14N on 13C NMR spectra of solids J. Amer. Chem. Soc 103 224226.CrossRefGoogle Scholar
Higgins, J. B. and Woessner, D. E., 1982 29Si, 27Al, and 23Na spectra of framework silicates EOS 63 1139.Google Scholar
Hinckley, D. N. and Ada, S., 1963 Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals, Proc. 11th Natl. Conf., Ottawa, Ontario, 1962 New York Pergamon Press 229235.Google Scholar
Imashiro, F., Maeda, S., Takegoshi, K., Terao, T. and Saika, A., 1983 Hydrogen bonding and conformational effects on 13C NMR chemical shifts on hydroxybenzaldehydes in the solid state Chem. Phys. Lett 99 189192.CrossRefGoogle Scholar
Jacobs, H., Sterckx, M. and Serratosa, J. M., 1970 A contribution to the study of the intercalation of dimethyl sulfoxide in the kaolinite lattice Proc. Reunion Hispano-Belge Miner. Arg., Madrid 154160.Google Scholar
Johnson, C. E. Jr. and Bovey, F. A., 1958 Calculation of nuclear magnetic resonance spectra of aromatic hydrocarbons J. Chem. Phys 29 10121014.CrossRefGoogle Scholar
Laby, R. H. and Walker, R. F., 1970 Hydrogen bonding in primary alkylammonium-vermiculite complexes J. Phys. Chem 74 23692373.CrossRefGoogle Scholar
Ladell, J. and Post, B., 1954 The crystal structure of formamide Acta Crystallogr 7 559564.CrossRefGoogle Scholar
Ledoux, R. L. and White, J. L., 1966 Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea J. Colloid Interface Sci 21 127152.CrossRefGoogle Scholar
Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G. and Grimmer, A.-R., 1980 Structural studies of silicates by solid-state high-resolution 29Si NMR J. Amer. Chem. Sod 102 48894893.CrossRefGoogle Scholar
Mägi, M., Samoson, A., Tarmak, M., Engelhardt, G. and Lippmaa, E., 1981 Investigations into the structure of silicate minerals using high-resolution solid state 29Si NMR spectroscopy Dokl. Akad. Nauk SSSR 261 11691174.Google Scholar
Nakamoto, K., Margoshes, M. and Rundle, R. E., 1955 Stretching frequencies as a function of distances in hydrogen bonds J. Amer. Chem. Soc 77 64806486.CrossRefGoogle Scholar
Olejnik, S., Aylmore, L. A. G., Posner, A. M. and Quirk, J. P., 1968 Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes J. Phys. Chem 72 241249.CrossRefGoogle Scholar
Olejnik, S., Posner, A. M. and Quirk, J. P., 1971 Infrared spectrum of the kaolinite-pyridine-N-oxide complex Spectrochim. Acta 27A 20052009.CrossRefGoogle Scholar
Pines, A., Gibby, M. G. and Waugh, J. S., 1972 Proton-enhanced nuclear induction spectroscopy. 13C chemical shielding anisotropy in some organic solids Chem. Phys. Lett 15 373376.CrossRefGoogle Scholar
Ripmeester, J. A., 1981 Methyl group inequivalence and rotational barrier heights from 1H NMR lineshapes: dimethylsulphoxide and trimethylsulphoniumiodide Can. J. Chem 59 16711674.CrossRefGoogle Scholar
Sanchez, C. M. and Gonzalez, G. S., 1970 Modification of the kaolinite crystal habit by dimethyl sulfoxide treatment An. Edafol. Agrobiol 29 651655.Google Scholar
Smith, J. V. and Blackwell, C. S., 1983 Nuclear magnetic resonance of silica polymorphs Nature 303 223225.CrossRefGoogle Scholar
Stothers, J. B., 1972 Carbon-13 NMR Spectroscopy New York Academic Press 49.Google Scholar
Suitch, P. R. and Young, R. A., 1983 Atom positions in highly ordered kaolinite Clays & Clay Minerals 31 357366.CrossRefGoogle Scholar
Tensmeyer, L. G., Hoffmann, R. W. and Brindley, G. W., 1960 Infrared studies of some complexes between ketones and calcium montmorillonite. Clay-organic studies. Part III J. Phys. Chem 64 16551662.CrossRefGoogle Scholar
Thomas, R., Shoemaker, C. B. and Klaas, E., 1966 The molecular and crystal structure of dimethyl sulfoxide, (H3C)2SO Acta Crystallogr 21 1220.CrossRefGoogle Scholar
Thompson, J. G., 1984 Two possible interpretations of 29Si nuclear magnetic resonance spectra of kaolin-group minerals Clays & Clay Minerals 32 233234.CrossRefGoogle Scholar
Thompson, J. G., 1984 29Si and 27Al nuclear magnetic resonance spectroscopy of 2:1 clay minerals Clay Miner 19 229236.CrossRefGoogle Scholar
Wasylishen, R. E. and Fyfe, C. A., 1982 High-resolution NMR of solids Annual Rept. NMR Spectroscopy 12 180.CrossRefGoogle Scholar
Wehrli, I. W. and Wirthlin, T., 1978 Interpretation of Car-bon-13 NMR Spectra London Heyden and Son 2239.Google Scholar
Weiss, A. and Orth, H., 1973 Layer-intercalation-compounds of kaolinite, nacrite, dickite and halloysite with pyridine-N-oxide and picolin-N-oxides Z. Naturforsch 28B 252254.CrossRefGoogle Scholar
Weiss, A., Thielepape, W., Göring, R., Ritter, W., Schäfer, H., Rosenqvist, I. Th. and Graff-Petersen, P., 1963 Kaolinit-Einlagerungs-Verbindungen Proc. Int. Clay Conf. Stockholm, 1963, Vol. 1 Oxford Pergamon Press 287305.Google Scholar