Published online by Cambridge University Press: 02 April 2024
A new approach to the interpretation of Mössbauer spectra of Fe3+-phyllosilicates having vacant trans-octahedra is based on (1) crystal structure simulation methods that allow for the size and the shape of a Fe3+-octahedron as a function of the nearest surrounding cations; and (2) calculations of electric field gradients (EFG) on Fe3+ in terms of the ionic point-charge model. Calculations were performed by direct summation within the region of radius ≤50 Å. Coordinates for the anions in the coordination octahedra have been assigned to take into account the nearest cationic environment. Atomic coordinates for the rest of the summation volume are those for the average unit cell. EFG calculations for cation combinations responsible for the visible quadrupole splitting Δvis in the spectra of nontronite, “red” muscovite, and celadonite have led to good agreement between Δvis and Δcalc. Computer fitting of the nontronite and celadonite spectra based on EFG calculations for the rest of the possible cation combinations suggests that the distribution of tetrahedral cations in nontronite obeys the Loewenstein rule, and in celadonite, the distribution of R3+ and R2+ over cis-octahedra is predominantly ordered, in agreement with electron diffraction and infrared spectroscopy data. The Mössbauer spectrum of one of the glauconites suggested the presence of celadonite-like and muscovite-like domains in its 2:1 layers.
Описан новый подход к интерпретации мессбауэровских спектров Ре3+-филлосиликатов с вакантными транс-октаэдрами. Он основан на: (1) применении методов структурного моделирования, позволяющих учитывать размер и форму Ре3+-октаэдра в зависимости от ближайших окружающих катионов; (2) расчетах градиентов электрических полей (ГЭП) на ядре Ре3+ в модели ионных точечных зарядов. Расчеты выполнялись прямым суммированием в области радиусом <50 Å. Координаты анионов координирующего октаэдра задавались в соответствии с ближайшим катионным окружением. В остальной области суммирования использовались координаты атомов усредненной элементарной ячейки.
Расчеты ГЭП для комбинаций катионов, ответственных за видимое квадрупольное расщепление Δвид в спектрах нонтронита, “красного” мусковита и селадонита, привели к хорошему согласию между Δввд и Δрасч. Из разложения спектров нонтронита и селадонита, основанного на расчетах ГЭП для остальных возможных комбинаций, следует, что распределение тетраэдрических катионов в нон-троните подчиняется правилу Левенштейна, а в селадоните распределение катионов E.3+ и K2+ по цис-октаэдрам является преимущественно упорядоченным, что согласуется с электронографическими и ИК-спектроскопическими данными.
Из анализа мессбауэровского спектра одного из глауконитов следует наличие селадонитоподобных и мусковитоподобных доменов в 2:1 слоях его структуры.
Обсуждаются методологические аспекты интерпретации мессбауэровских спектров диоктаэдри-ческих филлосиликатов.