Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-15T17:12:10.730Z Has data issue: false hasContentIssue false

The Intercalation of Kaolinite by Alkali Halides in the Solid State: A Systematic Study of the Intercalates and their Derivatives

Published online by Cambridge University Press:  28 February 2024

John G. Thompson
Affiliation:
Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
Neil Gabbitas
Affiliation:
Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
Philippa J. R. Uwins
Affiliation:
Centre for Microscopy and Microanalysis, University of Queensland, QLD 4072, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kaolinite: alkali halide intercalates have been successfully prepared by grinding the salt with kaolinite in the absence of water. Rate of intercalation is shown to correlate negatively with melting point of the salt. The basal dimensions of the intercalates increase with increasing size of the ion. As shown recently for kaolinite: NaCl intercalate, the layered structure survives the dehydroxylation of the kaolinite at 500°–600°C, at which point the excess alkali halide can be removed by rinsing to give an XRD-amorphous material. This amorphous material, of approximate stoichiometry MAlSiO4, reacts at surprisingly low temperatures to give crystalline phases, apparently of the same stoichiometry, with structures closely related to eucryptite (M = Li), carnegieite (M = Na), kalsilite (M = K), and leucite (M = K, Rb, Cs). The relationships between the structures of the reaction products are discussed.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Abbott, R. N., 1984 KAlSiO4 stuffed derivatives of tridymite: Phase relationships Am. Mineral 69 449457.Google Scholar
Behruzi, M. and Hahn, T., 1971 High lithium aluminum silicate and related phases in the lithium aluminum silicate, lithium gallium silicate, lithium aluminum germanate, and lithium gallium germanate systems Z. Kristallogr 133 405421 10.1524/zkri.1971.133.133.405.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D., 1985 Bond-Valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database Acta Crystallogr., Sect. B 41 244247 10.1107/S0108768185002063.CrossRefGoogle Scholar
Buerger, M. J., 1954 The stuffed derivatives of the silica structures Amer. Mineral 39 600614.Google Scholar
Faust, G. T., 1963 Phase transition in synthetic and natural leucite Schweiz. Mineral. Petrog. Mitt 43 165195.Google Scholar
Gallagher, S. A. and McCarthy, G. J., 1977 CsAlSi2O6 JCPDS data file 29407.Google Scholar
Gallagher, S. A., McCarthy, G. J. and Smith, D. K., 1977 Preparation and X-ray characterization of cesium alumi-nosilicate (CsAlSiO4) Mater. Res. Bull 12 11831190 10.1016/0025-5408(77)90172-6.CrossRefGoogle Scholar
Jackson, M. L. and Abdel-Kader, F. H., 1978 Kaolinite intercalation procedure for all sizes and types with X-ray spacing distinctive from other phyllosilicates Clays & Clay Minerals 17 157167.Google Scholar
Von Klaska, R. and Jarchow, O., 1975 Die Kristallstruktur und die Verzwillingung von RbAlSiO4 Z. Kristallogr 142 225238.CrossRefGoogle Scholar
Klingenberg, R. and Felsche, J., 1986 Interstitial cristobalite-type compounds (Na2O)≤33 Na[AlSiO4] J. Solid State Chem 61 4046 10.1016/0022-4596(86)90004-6.CrossRefGoogle Scholar
Klingenberg, R., Felsche, J. and Miehe, G., 1981 Crystal data for the low-temperature form of carnegieite NaAlSiO4 J. Appl. Crystallogr 14 6668 10.1107/S0021889881008728.CrossRefGoogle Scholar
Martin, R. F. and Lagache, M., 1975 Cell edges and infrared spectra of synthetic leucites and pollucites in the systems potassium aluminum silicate (KAlSi2O6)-rubidium aluminum silicate (RbAlSi2O6)-cesium aluminum silicate (CsAlSi2O6) Can. Mineral 13 275281.Google Scholar
Miller, J. G. and Oulton, T. D., 1972 Prototropy in kaolinite during percussive grinding Clays & Clay Minerals 18 313323 10.1346/CCMN.1970.0180603.CrossRefGoogle Scholar
O’Keeffe, M., 1989 The prediction and interpretation of bond lengths in crystals Struct. Bonding 71 161190 10.1007/3-540-50775-2_5.CrossRefGoogle Scholar
Perrotta, A. J. and Smith, J. V., 1965 The crystal structure of kalsilite, KAlSiO4 Min. Mag 35 588595.Google Scholar
Range, K. J. and Weiss, A., 1969 Titanium in the kaolinite lattice and formation of pseudoanatase during thermal dissociation of kaolins containing titanium Ber. Dtsch. Keram. Ges 46 629634.Google Scholar
Smith, J. V. and Tuttle, O. F., 1957 The nepheline-kalsilite system. I. X-ray data for crystalline phases Am. J. Sci 255 282305 10.2475/ajs.255.4.282.CrossRefGoogle Scholar
Takeuchi, Y., 1958 Detailed investigation of the structure of hexagonal BaAlSi2O8 with reference to its α-β inversion Miner. J., Japan 2 311332 10.2465/minerj1953.2.311.Google Scholar
Thompson, J. G. and Cuff, C., 1985 Crystal structure of kaolinite: dimethylsulfoxide intercalate Clays & Clay Minerals 33 490500 10.1346/CCMN.1985.0330603.CrossRefGoogle Scholar
Thompson, J. G., Uwins, P J R Whittaker, A. K. and Mackinnon, I. D. R., 1992 Structural characterization of kaolinite: NaCl intercalate and its derivatives Clays & Clay Minerals 40 369380 10.1346/CCMN.1992.0400401.CrossRefGoogle Scholar
Tuttle, O. F. and Smith, J. V., 1958 The nepheline-kalsilite system. II. Phase relations Am. J. Sci 256 571589 10.2475/ajs.256.8.571.CrossRefGoogle Scholar
Von Winkler, H. G. F., 1948 Synthesis and crystal structure of eucryptites Acta Crystallogr 1 2734 10.1107/S0365110X48000065.Google Scholar
Weiss, A., Thielepape, W. and Orth, H., 1966 Neue Kaolinit-Einlagerungsverbindungen Proc. Int. Clay Conf. Jerusalem, 1966 1 277293.Google Scholar
Withers, R. L. and Thompson, J. G., 1993 A modulation wave approach to the structural parameterization and Reit-veld refinement of low-carnegieite Acta Crystallogr. Sect. B. .CrossRefGoogle Scholar