Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T21:27:41.620Z Has data issue: false hasContentIssue false

Intercalation of Al13-Polyethyleneoxide Complexes into Montmorillonite Clay

Published online by Cambridge University Press:  28 February 2024

Emmanuelle Montarges
Affiliation:
Laboratoire Environnement et Minéralurgie, rue du doyen Marcel Roubault, BP 40 54501 Vandoeuvre cedex, France
Laurent J. Michot*
Affiliation:
Laboratoire Environnement et Minéralurgie, rue du doyen Marcel Roubault, BP 40 54501 Vandoeuvre cedex, France
François Lhote
Affiliation:
Centre de Recherches Pérographiques et Géochimiques, rue Notre Dame des Pauvres, 54500 Vandoeuvre, France
Thomas Fabien
Affiliation:
Laboratoire Environnement et Minéralurgie, rue du doyen Marcel Roubault, BP 40 54501 Vandoeuvre cedex, France
Frédéric Villieras
Affiliation:
Laboratoire Environnement et Minéralurgie, rue du doyen Marcel Roubault, BP 40 54501 Vandoeuvre cedex, France
*
*Author to whom correspondence should be addressed.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Novel promising modified clays adsorbents were synthesized by intercalating hydroxy-Al polymer associated with poly(ethyleneoxide) in the interlayer of montmorillonite. Two different PEOs of low molecular weight (600) and high molecular weight (100,000) were used. In both cases, the resulting materials are hydrolytically stable and display a slightly better crystallinity than the materials prepared in the absence of PEO. Thermal analysis and infrared spectroscopy indicate changes in the PEO molecular conformation after intercalation revealing interactions between the polycations and the organic molecules. The chain length of the polymer has a strong influence on the surface area of the pillared materials obtained after calcination at 500°C. The use of the high molecular weight polymer leads to products with a higher specific surface area (about 400 m2/g) whereas the lower molecular weight compound does not modify significantly the surface areas. This behavior can be explained by the different nature of the species intercalated in the interlayer. PEO(600) leads to isolated organometallic species whereas PEO(100,000) seems to lead to a network of complexed polycations linked by ethylene oxide units. In the case of the PEO(100,000), high amounts of polymer in the pillaring solution provoke a partial dissolution of the octahedral layer of the clay.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Ananthapadmanabhan, K. P., and Goddard, E. D. 1987. Aqueous biphase formation in polyethylene oxide-inorganic salt systems. Langmuir 3: 2531.Google Scholar
Aranda, P., and Ruiz-Hitzky, E. 1992. Poly(ethylene oxide)-silicate intercalation materials. Chem. Mater. 4: 13951403.Google Scholar
Bailey, F. E., and Koleske, J. 1990. Alkylene oxides and their polymers, chapter 6, Physical properties of poly(alkylene oxide)s. Surfactant Science Series 35: 153182.Google Scholar
Bottero, J. Y., Cases, J. M., Fiessinger, F., and Poirier, J. E. 1980. Studies of hydrolyzed aluminum species and composition of aqueous solution. J. Phys. Chem. 84: 29332939.Google Scholar
Bottero, J. Y., Axelos, M., Tchoubar, D., Cases, J. M., Fripiat, J. J., and Fiessinger, F. 1987. Mechanism of formation of aluminum trihydroxide from keggin Al13 polymers. J. of Colloid and Interface Sci. 117: 47.Google Scholar
Boyd, S. A., Shaobai, S., Lee, J. F., and Mortland, M. M. 1988. Pentachlorophenol sorption by organo-clays. Clays & Clays Miner. 36: 125130.Google Scholar
Casal, B., Ruiz-Hitzky, E., Serratosa, J. M., and Fripiat, J. J. 1984. Vibrational spectra of ammonium ions in crownether-NH4+-montmorillonite complexes. J. Chem. Soc. Faraday Trans. I 80: 22252232.Google Scholar
Chevalier, S., Franck, R., Suquet, H., Lambert, J. F., and Barthomeuf, D. 1994. Al-pillared saponites, Part 1. IR studies. J. Chem. Soc. Faraday Trans. I 90: 667674.Google Scholar
De Boer, J. H., Lippens, B. C., Linsen, B. G., Broekhoff, J. C. P., Van den Heuvel, A., and Osinga, Th. J. 1966. The t-curve of multimolecular N2 adsorption. J. Colloid Interface Sci. 6: 677.Google Scholar
Doff, D. H., Gangas, N. H. J., Allan, J. E. M., and Coey, J. M. D. 1988. Preparation and characterization of iron oxide pillared montmorillonite. Clay Miner. 23: 367377.Google Scholar
Fahey, D. R., Williams, K. A., Harris, R. J., and Stapp, P. R. 1989. Preparation of pillared clays. US Patent 4845066.Google Scholar
Figueras, F., Mattrod-Bashi, A., Fetter, G., Thrierr, A., and Zanchetta, V. Z. 1989. Preparation and thermal properties of Zr-intercalated clays. J. Catal. 119: 9196.Google Scholar
Johansson, G., 1960. On the crystal structures of some basic aluminum salts. Acta Chem. Scand. 14: 771.Google Scholar
Lee, W. Y., Raythatha, R. H., and Tatarchuk, B. J. 1989. Pillared-clay catalysts containing mixed-metal complexes. J Catal. 115: 159179.Google Scholar
Michot, L. J., and Pinnavaia, T. J. 1991. Adsorption of chlorinated phenols from aqueous solution by surfactant-modified pillared clays. Clays & Clays Miner. 39: 634641.Google Scholar
Michot, L. J., and Pinnavaia, T. J. 1992. Improved synthesis of alumina-pillared montmorillonite by surfactant modification. Chem. Mater. 6: 1433.Google Scholar
Michot, L. J., Barres, O., Hegg, L. E., and Pinnavaia, T. J. 1993. Cointercalation of Al13 polycations and nonionic Surfactants in montmorillonite clay. Langmuir 9: 17941800.Google Scholar
Mortland, M. M., Shaobai, S., and Boyd, S. A. 1986. Clay-organic complexes as adsorbents for phenol and chlorophenols. Clays & Clays Miner. 34: 581585.Google Scholar
Poncelet, G., and Schutz, A. 1986. Pillared montmorillonite and beidellite. Acidity and catalytic properties. J. Chem. Reactions in Org. and Inorg. Constrained Syst. 165178.Google Scholar
Ruiz-Hitzky, E., and Aranda, P. 1990. Polymer-salt intercalation complexes in layer silicates. Avanced Materials 29: 545547.Google Scholar
Sakai, Y., Nakamura, H., Takagi, M., and Ueno, K. 1986. The solvent extraction of alkaline earth metal ions with nonionic surfactants. Bulletin of The Chemical Society of Japan 59: 381384.Google Scholar
Sakai, Y., Nabeki, K., Uehara, E., Hiraishi, M., and Takagi, M. 1993. Effect of the poly(oxyethylene) chain length of ionic surfactants on the extraction of alkali metal ions. Bulletin of The Chemical Society of Japan 66: 31073109.Google Scholar
Sterte, J., and Shabtai, J. 1987. Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum montmorillonites and fluorhectorites. Clays & Clays Miner. 35: 429439.Google Scholar
Takahashi, Y., Sumita, I., and Tadokoro, H. 1973. Structural studies of polyethers. IX. Planar zigzag modification of poly(ethylene oxide). J. Polymer Sci. 11: 21132122.Google Scholar
Tennakoon, D. B. T., Jones, W., and Thomas, J. M. 1986. Structural aspects of metal-oxide-pillared sheet silicates. J. Chem. Soc. Faraday Trans. I 82: 30813095.Google Scholar
Vaughan, D. E. W., and Lussier, R. J. 1980. Preprints of the 5th International Conference on Zeolites, Naples, Italy, June 2–6, 1980.Google Scholar
Wolfe, T. A., Demirel, T., and Baumann, E. Robert. 1985. Intercalation of aliphatic amines with montmorillonite to enhance adsorption of organic pollutants. Clays & Clay Miner. 33: 301.Google Scholar