Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T10:07:12.477Z Has data issue: false hasContentIssue false

Interaction of Chlordimeform with Clay Minerals

Published online by Cambridge University Press:  01 July 2024

Maria C. Hermosin
Affiliation:
Centro de Edafologia y Biologia Aplicada del Cuarto del C.S.I.C., Apartado 1052, Sevilla, Spain
J. L. Perez Rodriguez
Affiliation:
Centro de Edafologia y Biologia Aplicada del Cuarto del C.S.I.C., Apartado 1052, Sevilla, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption-desorption of the cationic pesticide chlordimeform from aqueous solutions on montmorillonite, kaolinite, illite, and vermiculite appears to be a cation-exchange process coupled with the coadsorption of neutral molecules and the extraction of Al from the structure of the mineral. Chlordimeform adsorption on montmorillonite, illite, and vermiculite by cation exchange is an irreversible process, whereas chlordimeform adsorbed on kaolinite is weakly bonded to the clay and easily removed by washing with water. X-ray powder diffraction and infrared spectroscopic data show that chlordimeform cations are adsorbed in the interlamellar spaces of montmorillonite at charge sites, lying in a flat position in contrast to kaolinite, illite, and vermiculite, where they adsorb on external surfaces or charge sites close to the crystal edges.

Резюме

Резюме

Адсорбция-десорбция катионного пестицида, хлордимеформа, из водяного раствора на монтмориллоните, каолините, иллите, и вермикулите является катионнообменным процессом, связанным с коадсорбцией нейтральных молекул и экстракцией Аl из структуры минерала. Адсорбция хлордимеформа на монтмориллоните, иллите, и вермикулите при помощи катионного обмена является необратимым процессом, тогда как хлордимеформ, адсорбированный на каолините, есть слабо связанный с глиной и легко удаляемый при промывании водой. Результаты рентгеновской порошковой дифракции и инфракрасной спектроскопии показывают, что катионы хлордимеформа адсорбируются в пространствах между тонкими пластинками монтмориллонита, в центрах заряда, расположенные плоско, в противоположности до каолинита, иллита, и вермикулита, в которых они адсорбируются на внешней поверхности центров заряда, в поблизости ребор кристалла. [Е.С.]

Resümee

Resümee

Die Adsorption-Desorption des kationischen Pestizides Chlordimeform aus wässrigen Lösungen an Montmorillonit, Kaolinit, Illit, und Vermiculit scheint ein Kationenaustauschprozeß zu sein, der gleichzeitig mit der Adsorption neutraler Moleküle und der Extraktion von Al aus der Mineralstruktur gekoppelt ist. Die Adsorption von Chlordimeform an Montmorillonit, Illit, und Vermiculit durch Kationenaustausch ist ein irreversibler Prozeß, während an Kaolinit adsorbiertes Chlordimeform nut schwach an den Ton gebunden ist und leicht mit Wasser ausgewaschen werden kann. Die Daten der Röntgenpulverdiffraktometrie und Infrarotspektroskopie zeigen, daß Chlordimeform-Kationen in den interlamellaren Zwischenräumen des Montmorillonites an Ladungsplätzen adsorbiert sind und in einer flachen Position liegen, während sie bei Kaolinit, Illit, und Vermiculit im Gegensatz dazu an äußeren Oberflächen oder an Ladungsplätzen nahe der Kristallkanten adsorbiert zu sein scheinen. [U.W.]

Résumé

Résumé

L'adsorption-ésorption du pesticide cationique chlordiméforme de solutions aqueuses sur la montmorillonite, la kaolinite, l'illite, et la vermiculite semble être un procédé d’échange de cations accouplé à la coadsorption de molécules neutres et à l'extraction d’ Al de la structure du minéral. L'adsorption de la chlordiméforme sur la montmorillonite, l'illite, et la vermiculite par échange de cations est un procédé irréversible, tandis que la chlordiméforme adsorbée sur la kaolinite est faiblement liée à l'argile, el facilement enlevée par un lavage à l'eau. Les données de diffraction poudrée aux rayons-X, et de spectroscopie infrarouge montrent que les cations de chlordiméforme sont adsorbés dans les espaces interfeuillets de la montmorillonite à des sites de charges, dans une position plate, contrairement à la kaolinite, l'illite, et la vermiculite, où ils semblent adsorber sur les surfaces externes ou sur des sites de charges près des bords des cristaux. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

References

Bailey, G. W. and White, J. L., (1970) Factors influencing the adsorption, desorption and movement of pesticides in soil Res. Rev. 32 2992.Google Scholar
Frissel, M. J. and Bolt, G. H., (1962) Interaction between certain ionizable compounds (herbicides) and clay minerals Soil Sci. 94 284291.CrossRefGoogle Scholar
Giles, C. H., MacEwan, T. H., Nakhwa, S. N., and Smith, D. (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanism and measurement of specific surface area of solids: J. Chem. Soc., 39733993.Google Scholar
Green, R. E. and Guenzi, W. D., (1974) Pesticide–clay–water interactions Pesticide, Soil, and Water Madison, Wisconsin Soil Sci. Soc. Amer. 337.Google Scholar
Greene-Kelly, R., (1955) Sorption of aromatic compounds by montmorillonite. I. Orientation studies Trans. Faraday Soc. 30 137142.Google Scholar
Grim, R. E. Allaway, W. H. and Cuthberg, F. L., (1947) Reaction of different clay minerals with some organic cations J. Amer. Chem. Soc. 30 137142.Google Scholar
Haque, R. Lilley, S. and Coshaw, N. R., (1970) Mechanism of adsorption of diquat and paraquat on montmorillonite surface J. Colloid Interface Sci. 33 185192.CrossRefGoogle Scholar
Hayes, M. H. B. Pick, M. E. and Toms, B. A., (1975) Interaction between clay minerals and bipyridylium herbicides Res. Rev. 37 125.Google Scholar
Hendricks, S. B., (1941) Base exchange on the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to the van der Waals forces J. Phys. Chem. 45 6581.CrossRefGoogle Scholar
Huang, J. C. and Liao, C. S., (1970) Adsorption of pesticides by clay minerals J. Sanit. Eng. Div. Amer. Soc. Civil Eng. SA5 10571078.CrossRefGoogle Scholar
Iwan, J. and Goller, D., (1975) Metabolic fate of chlordimeform in soil under aerobic, anaerobic, and sterile conditions Environmental Quality and Safety, Supplement Vol. III, Pesticides Stuttgart Georg Thieme Publishers 282287.Google Scholar
Iwan, J. Hoyer, G. A. Rosenberg, D. and Goller, D., (1976) Transformation of 4-chloro-o-toluidine in soil: Generation of coupling products by one-electron oxidation Pestic. Sci. 7 621631.CrossRefGoogle Scholar
Johns, W. D. and Sen Gupta, P. K., (1967) Vermiculite-alkylammonium complexes Amer. Mineral. 52 10741076.Google Scholar
Knight, B. A. C. and Tomlinson, T. E., (1967) The interaction of paraquat (1:1 dimethyl-4,4-dipyridylium dichloride) with mineral soils J. Soil Sci. 18 233242.CrossRefGoogle Scholar
Lagaly, G. Weiss, A. and Heller, L., (1969) Determination of the layer charge in mica-type layer silicates Proc. Int. Clay Conf., Tokyo, 1969, Vol. I Jerusalem Israel Univ. Press 227234.Google Scholar
Loeppert, R. H. Mortland, M. M. Jr. and Pinnavaia, T. J., (1979) Synthesis and properties of heat-stable expanded smectite and vermiculite Clays & Clay Minerals 27 201208.CrossRefGoogle Scholar
Mathieson, A McL and Walker, G. F., (1954) Structure of magnesium-vermiculite Amer. Mineral. 39 231235.Google Scholar
Mortland, M. M., (1970) Clay-organic complexes and interactions Adv. Agron. 22 75117.CrossRefGoogle Scholar
Mortland, M. M. and Bailey, S. W., (1975) Interactions between clays and organic pollutants Proc. Int. Clay Conf., Mexico City, 1975 Wilmette, Illinois Applied Publishing 469475.Google Scholar
Perez Rodriguez, J. L. Hermosin, M. C., Mortland, M. M. and Farmer, V. C., (1979) Adsorption of chlordimeform by montmorillonite Proc. Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 227234.Google Scholar
Pritchard, D. T., (1967) Spectrophotometric determination of aluminum in soil extracts with xylenol orange Analyst 92 103106.CrossRefGoogle Scholar
Rausell-Colom, J. A. and Salvador, P. S., (1971) Complexes vermiculite-amino acides Clay Miner. 9 139149.CrossRefGoogle Scholar
Theng, B. K. G., (1974) Interactions with positively charged organic species The Chemistry of Clay–Organic Reactions London Adam Hilger 211238.Google Scholar
Tomlinsom, T. E. Knight, B. A. G. Bastow, A. M. and Heaver, A. A., (1969) Structural factors affecting the adsorption of bipyridylium cations by clay minerals Physico-Chemical and Biophysical Factors Affecting the Activity of Pesticides London Soc. Chem. Ind. 317329.Google Scholar
Vansant, E. F. and Uytterhoeven, J. B., (1973) The adsorption of aromatic, heterocyclic and cyclic ammonium cations by montmorillonite Clay Miner. 10 6169.CrossRefGoogle Scholar
Walker, G. F. and Gieseking, J. E., (1975) Vermiculites Soil Components, Vol. 2 Heidelberg, New York Springer-Verlag 155189.CrossRefGoogle Scholar
Weber, J. B. and Gould, R. F., (1972) Interaction of organic pesticides with particulate matter in aquatic and soil environment Fate of Organic Pesticides in Aquatic Environment Washington D.C. Amer. Chem. Soc. 55120.CrossRefGoogle Scholar
Weber, J. B. and Weed, S. B., (1968) Adsorption and desorption of diquat, paraquat and prometrone by montmorillonitic and kaolinitic clays Soil Sci. Soc. Amer. Proc. 32 485487.CrossRefGoogle Scholar
Weed, S. B. and Weber, J. B., (1969) The effect of cation exchange capacity on the retention of diquat and paraquat by three-layer type clay minerals. I. Adsorption and release Soil Sci. Soc. Amer. Proc. 33 379382.CrossRefGoogle Scholar
White, J. L., Kaufman, D. D. Still, G. G. Paulson, G. D. and Bandal, S. K., (1976) Clay-pesticide interactions Bound and Conjugated Pesticide Residues Washington D.C. Amer. Chem. Soc. 208218.CrossRefGoogle Scholar
Weiss, A., Swineford, A. and Franks, P. C., (1963) Mica-type layer silicates with alkylammonium ions Clays and Clay Minerals Proc. 10th Natl. Conf., Austin, Texas, 1961 New York Pergamon Press 191224.Google Scholar