Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T09:03:38.833Z Has data issue: false hasContentIssue false

Infrared Reflectance Study of Thermally Treated Li- and Cs-Montmorillonites

Published online by Cambridge University Press:  28 February 2024

M. A. Karakassides
Affiliation:
Institute of Materials Science, NCSR 《Demokritos》, 153 10 Ag. Paraskevi Attikis, Greece
D. Petridis
Affiliation:
Institute of Materials Science, NCSR 《Demokritos》, 153 10 Ag. Paraskevi Attikis, Greece
D. Gournis
Affiliation:
Institute of Physical Chemistry, NCSR 《Demokritos》, 153 10 Ag. Paraskevi Attikis, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure of Li- and Cs-montmorillonites was studied using infrared (IR) reflectance spectroscopy. The spectra of heat-treated clays between 80 and 220 °C were analyzed by Kramers-Krönig inversion in order to obtain the optical and dielectric properties of the clays. The analysis revealed the transverse-optic (TO) and longitudinal-optic (LO) components of the asymmetric stretching vibration of Si-O-Si bridges. Major differences, in particular the systematic development of new bands, were found in the Li-montmorillonite LO and TO spectra with increasing temperature. These changes were attributed to the migration of the Li-cations into the layer structure.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Almeida, R.M. Guiton, T.A. and Pantano, C.G., 1990 Characterization of silica gels by infrared reflection spectroscopy J Non-Cryst Solids 121 193197 10.1016/0022-3093(90)90130-E.CrossRefGoogle Scholar
Alvero, R. Alba, M.D. Castro, M.A. and Trillo, J.M., 1994 Reversible migration of lithium in montmorillonite J Phys Chem 98 78487853 10.1021/j100083a017.CrossRefGoogle Scholar
Berreman, D.W., 1963 Infrared absorption at longitudinal optic frequency in cubic crystal films Phys Rev 130 21932198 10.1103/PhysRev.130.2193.CrossRefGoogle Scholar
Bishop, J.L. Pieters, C.M. and Edwards, J.D., 1994 Infrared spectroscopic analyses on nature of water in montmorilonite Clays Clay Miner 42 702716 10.1346/CCMN.1994.0420606.CrossRefGoogle Scholar
Calvet, R. and Prost, R., 1971 Cation migration into empty octahedral sites and surface properties of clays Clays Clay Miner 19 175186 10.1346/CCMN.1971.0190306.CrossRefGoogle Scholar
Clark, R.N. King, T.V. Kleijwa, M. and Swayze, G.A., 1990 High spectral resolution reflectance spectroscopy of minerals J Geophys Res 95 1265312680 10.1029/JB095iB08p12653.Google Scholar
Delineau, T. Allard, T. Muller, J.P. Barres, O. Yvon, J. and Cases, J.M., 1994 FTIR reflectance vs. EPR studies of structural iron in kaolinites Clays Clay Miner 42 308320 10.1346/CCMN.1994.0420309.CrossRefGoogle Scholar
Farmer, V.C. and Farmer, V.C., 1974 The layer silicates The infrared spectra of minerals London Mineral Soc. 331363 10.1180/mono-4.15.CrossRefGoogle Scholar
Farmer, V.C. and Russel, J.D., 1964 The infrared of layered silicates Spectrochim Acta 20 11491173 10.1016/0371-1951(64)80165-X.CrossRefGoogle Scholar
Farmer, V.C. and Russel, J.D., 1967 Infrared absorption spectrometry in clay studies Clays Clay Miner 15 121142 10.1346/CCMN.1967.0150112.CrossRefGoogle Scholar
Galeener, F.L. and Lucovsky, G., 1976 Longitudinal optical vibrations in glasses: GeO2 and SiO2 Phys Rev Lett. 37 14741478 10.1103/PhysRevLett.37.1474.CrossRefGoogle Scholar
Gaskell, P.H. and Johnson, D.W., 1976 The optical constants of quartz, virteous silica and neutron-irradiated virteous silica: II J Non-Cryst Solids 20 171191 10.1016/0022-3093(76)90131-9.CrossRefGoogle Scholar
Hofmann, V. and Kiemen, R., 1950 Verlust der Austausch fohiqkeit von Lithiumionen and Bentonit durch Erhitzung Z Anorg Allg Chem 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Kamitsos, E.I. Patsis, A.P. Karakassides, M.A. and Chryssikos, G.D., 1990 Infrared reflectance spectra of lithium borate glasses J Non-Cryst Solids 126 5267 10.1016/0022-3093(90)91023-K.CrossRefGoogle Scholar
Kamitsos, E.I. Patsis, A.P. and Kordas, G., 1993 Infrared-reflectance spectra of heat-treated, sol-gel derived silica Phys Rev B 48 1249912505 10.1103/PhysRevB.48.12499.CrossRefGoogle ScholarPubMed
King, R.D. Noceda, D.G. and Pinnavaia, T.J., 1987 On the nature of electroactive sites in clay-modified electrodes J Electroanal Chem 236 4353 10.1016/0022-0728(87)88017-8.CrossRefGoogle Scholar
Kirk, C.T., 1988 Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica Phys Rev B 38 12551273 10.1103/PhysRevB.38.1255.CrossRefGoogle ScholarPubMed
Kitajima, K. and Takusagawa, N., 1990 Effects of tetrahedral isomorphic substitution on the IR spectra of synthetic fluorine micas Clay Miner 25 235241 10.1180/claymin.1990.025.2.08.CrossRefGoogle Scholar
Kitajima, K. Taruta, S. and Takusagawa, N., 1991 Effect of layer charge on the IR spectra of synthetic fluorine micas Clay Miner 26 435440 10.1180/claymin.1991.026.3.13.CrossRefGoogle Scholar
Lerot, L. and Low, P.F., 1976 Effect of swelling on the infrared absorption spectrum of montmorillonite Clays Clay Miner 24 191199 10.1346/CCMN.1976.0240407.CrossRefGoogle Scholar
Lucovsky, G. Wong, C.K. and Pollard, W.B., 1983 Vibrational properties of glasses: Intermediate range order J Non-Cryst Solids 59+ 60 839846 10.1016/0022-3093(83)90301-0.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Gates, W.P. and Komadel, P., 1996 Preparation and infrared spectroscopic characterization of reduced-charge montmorillonite with various Li contents Clay Miner 31 233241 10.1180/claymin.1996.031.2.09.CrossRefGoogle Scholar
McBride, M.B. Pinnavaia, T.J. and Mortland, M.M., 1975 Structural Fe3+ in smectites by exchange ions Clays Clay Miner 23 103107 10.1346/CCMN.1975.0230204.CrossRefGoogle Scholar
Minami, T., 1983 Preparation and properties of superionic conducting glasses based on silver halides J Non-Cryst Solids 56 1526 10.1016/0022-3093(83)90440-4.CrossRefGoogle Scholar
Pai, P.G. Chao, S.S. Takagi, Y. and Lucovsky, G., 1986 Infrared spectroscopic study of silicon oxide (SiOx) films produced by plasma enhanced chemical vapor deposition J Vac Sci Technol A 4 689694 10.1116/1.573833.CrossRefGoogle Scholar
Roy, B.N., 1987 Spectroscopic analysis of the structure of silicate glasses along the joint xMAIO2-( 1 - x)SiO2 (M = Li, Na, K, Rb, Cs) J Am Ceram Soc 70 183192 10.1111/j.1151-2916.1987.tb04955.x.CrossRefGoogle Scholar
Russel, J.D. and Fraser, A.R., 1971 I.R. Spectroscopic evidence for interaction between hydronium ions and lattice OH groups in montmorilonite Clays Clay Miner 19 5559 10.1346/CCMN.1971.0190106.CrossRefGoogle Scholar
Spitzer, W.G. and Kleinman, D.A., 1961 Infrared lattice bands of quartz Phys Rev 121 13241335 10.1103/PhysRev.121.1324.CrossRefGoogle Scholar
Spitzer, W.G. Miller, R.C. Kleinman, D.A. and Howarth, L.E., 1962 Far infrared dielectric dispersion in BaTiO3, SrTiO3 and TiO3 Phys Rev 126 17101721 10.1103/PhysRev.126.1710.CrossRefGoogle Scholar
Sposito, G. Prost, R. and Gaultier, J.P., 1983 Infrared spectroscopic study of absorbed water in reduced charged Na/Li-mont-morillonites Clays Clay Miner 31 916 10.1346/CCMN.1983.0310102.CrossRefGoogle Scholar
Stern, E., 1963 Elementary theory of the optical properties of solids Solid State Phys 15 299408 10.1016/S0081-1947(08)60594-9.CrossRefGoogle Scholar
Wihlborg, W.T., 1989 Applications of reflectance FT-IR microspectroscopy Scan Time 16 15.Google Scholar