Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T16:00:00.672Z Has data issue: false hasContentIssue false

Influence of Silica Content on the Surface Charge Characteristics of Allophanic Clays

Published online by Cambridge University Press:  02 April 2024

A. Gonzales-Batista
Affiliation:
Catedra de Edafologia, Universidad de La Laguna, Santa Cruz de Teneriffe, Spain
J. M. Hernandez-Moreno
Affiliation:
Catedra de Edafologia, Universidad de La Laguna, Santa Cruz de Teneriffe, Spain
E. Fernandez-Caldas
Affiliation:
Catedra de Edafologia, Universidad de La Laguna, Santa Cruz de Teneriffe, Spain
A. J. Herbillon
Affiliation:
Section de Physico-Chimie Minérale du Musée Royal de l'Afrique Centrale and Université Catholique de Louvain, B-1348, Louvain-la-Neuve, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The surface and charge characteristics of 6 allophanic clays originating from a climatosequence of Andisols have been studied by titration, ion retention, surface area, and reactivity measurements. Several properties of these clays, such as the pH of zero charge, the magnitude of the surface area, and the reactivity of structural hydroxyl groups, appear to be governed by their chemical composition, especially by their silica content. A similar relationship between the above properties and silica content also exists for synthetic aluminosilicate gels (often quoted in the literature as possible models of allophanes), despite their different structure to the natural clays. An explanation is that as desilication proceeds, octahedral polymeric units of aluminum progressively individualize in both the synthetic and natural samples. The surface areas of the aUophanic clays, based on the slope of the titration curve at pH 7, are closely related to the amounts of structural hydroxyl that can react with fluoride at about the same pH. The permanent negative charges are always very low, even for silica-rich, allophane-bearing samples. It is therefore suggested that all of these clays should be virtually free of tetrahedral aluminum.

Резюме

Резюме

Характеристики поверхности и заряда шести аллофановых глин, присходящих из климатического ряда Андисоли, исследовались путем титрования, измерений сохранения ионов, площади поверхности и реактивности. Несколько свойств этих глин, как pH нулевого заряда, величина площади поверхности, и реактивность структурных гидроксиловых групп, регулируется химическим составом, особенно содержанием кремнезема. Похожая связь между этими свойствами и содержанием кремнезема наблюдалась также в случае синтетических алюминоси- ликатовых гелей (часто цитированных в литературе как возможные модели аллофанов), несмотря на различиные структуры гелей и натуральных глин. Это объясняется тем, что в меру десих ликации полимерические октаэдрические элементы алюминия придают более индивидуальный х арактер в обоих, натуральных и синтетических, образцах. Площади поверхности аллофановых глин, полученные на основе наклона кривых титрования при pH = 7, тесно связаны с количеством структурных гидроксиловых групп, которые могут реагировать с фторидом при том же самом pH. Постоянные отрицательные заряды всегда очень низкие, даже в случае кремнеземо-богатых аллофановых образцов. В связи с этим предлагается, что все эти глины являются фактически свободны от тетраэдрического алюминия. [Е.С.]

Resümee

Resümee

Die Oberflächen- und Ladungscharakteristika von 6 Allophanartigen Tonen, die von einer klimatischen Abfolge von Andisolen stammten, wurden mittels Titration, lonenretention, Oberflächenbestimmung, und Reaktivitätsmessungen untersucht. Einige Eigenschaften dieser Tone, wie z.B. der pH-Wert bei Null-Ladung, die Größe der Oberfläche und die Reaktivität struktureller OH-Gruppen scheinen durch die chemische Zusammensetzung, vor allem vom SiO2-GehaIt, bestimmt zu werden. Eine ähnliche Beziehung zwischen den oben genannten Eigenschaften und dem SiO2-Gehalt ist auch bei synthetischen Alumosilikat-Gelen vorhanden (die in der Literatur oft als mögliches Modell für Allophane herangezogen werden) trotz ihrer zu natürlichen Tonen verschiedenen Struktur. Eine Erklärungsmöglichkeit ist, daß mit fortschreitender SiO2-Abnahme oktaedrische polymere Einheiten von Aluminium in zunehmendem Maße einzeln auftreten sowohl in den synthetischen als auch in den natürlichen Proben. Die Oberflächen der Allophan-artigen Tone (gewonnen aus der Neigung der Titrationskurve bei pH 7) hängt eng mit den Gehalten an strukturellen Hydroxyl zusammen, das mit Fluorid bei etwa dem gleichen pH reagieren kann. Die permanenten negativen Ladungen sind immer sehr niedrig, selbst für SiO2-reiche AUophan-haltige Proben. Es wird daher angenommen, daß alle diese Tone nahezu frei von tetraedrischem Aluminium sein sollten. [U.W.]

Résumé

Résumé

Les propriétés de surface et de charge de 6 argiles en provenance d'une climatoséquence de sols à caractères andiques ont été étudiées en mettant en oeuvre des techniques telles que titrations potentiométriques, rétentions d'ions, déterminations de la surface spécifique, et tests de réactivité en présence de fluorure. Plusieurs caractéristiques de ces argiles comme la localisation du pH correspondant à une charge nulle, la grandeur de l'aire de surface, et la réactivité des groupements hydroxyliques structuraux sont déterminés par leur composition chimique, tout particulièrement par leur teneur en silice. De ce point de vue, on observe une remarquable analogie entre ces argiles naturelles et les gels aluminosiliciques synthétiques souvent présentés comme modèles d'allophanes dans littérature. Il est suggéré que, tant dans les échantillons naturels que synthétiques, la désilicification en entraînant l'individualisation progressive d'unités polymériques d'aluminium octaédrique est responsable des modifications observées. Pour les échantillons naturels, l'aire de la surface estimée par la pente de la courbe de titration à pH 7 montre une étroite relation avec la quantité d'hydroxyles structuraux réagissant avec fanion fluorure au même pH. La charge négative permanente de ces argiles est toujours très faible, même lorsque leur teneur en silice est élevée. Ceci suggère que leur contenu en Al tétraédrique est négligeable.

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Aomine, S. and Otsuka, H., 1968 Surface of soil allophanic clays Trans 9th Intern. Congr. Soil Sci., Adelaide I 731737.Google Scholar
Basulabramanian, V. and Kanehiro, V., 1978 Surface chemistry of the hydrandepts and its relation to nitrate adsorption as affected by profile depth and dehydration J. Soil Sci. 29 4757.CrossRefGoogle Scholar
Bracewell, J. M., Campbell, A. S. and Mitchell, B. D., 1970 An assessment of some thermal and Chemical techniques in the study of the poorly ordered aluminosilicates in soil clays Clay Miner. 8 325335.CrossRefGoogle Scholar
Cloos, P., Léonard, A. J., Moreau, A., Herbillon, A. and Fripiat, J. J., 1969 Structural organization in amoiphous silico-aluminas Clays & Clay Minerais 17 279287.CrossRefGoogle Scholar
Cradwick, P. D. G., Farmer, V. C., Russell, J. D., Masson, C. R., Wada, K. and Yoshinaga, N., 1972 Imogolite, a hydrated aluminium silicate of tubular structure Nature 240 187189.Google Scholar
El Swaify, S. A. and Sayegh, A. H., 1975 Charge characteristics of an Oxisol and an Inceptisol from Hawaii Soil Science 120 4956.CrossRefGoogle Scholar
Espinoza, W., Gast, R. G. and Adams, R. S., 1975 Charge characteristics and nitrate retention by two Andepts from south-central Chile Soil Sci. Soc. Amer. Proc. 39 842846.CrossRefGoogle Scholar
Fey, M. V. and Le Roux, J., 1976 Electric charges on sesquioxidic soil clays Soil Sci. Soc. Amer. J. 40 359364.CrossRefGoogle Scholar
Fey, M. V., Le Roux, J. and Bailey, S. W., 1976 Quantitative determination of allophanes in soil clays Proc. Int. Clay Conf. Mexico City, 1975 Illinois Applied Publishing, Wilmette 451463.Google Scholar
Gallez, A., Juo, A. S. R. and Herbillon, A. J., 1976 Surface and charge characteristics of selected soils in the tropics Soil Sci. Soc. Amer. J. 40 601608.CrossRefGoogle Scholar
Gillman, G. P. and Bell, L. C., 1976 Surface charge characteristics of six weathered soils from tropical North Queensland Aust. J. Soil Res. 14 351360.CrossRefGoogle Scholar
Gillman, G. P. and Uehara, G., 1980 Characteristics of soils with variable and permanent charge minerais. II. Experimental Soil Sci. Soc. Amer. J. 44 252255.CrossRefGoogle Scholar
Heilman, M. D., Carter, D. L. and Gonzalez, C. L., 1965 The ethylene glycol monoethylether (EGME) technique for determining soil surface area Soil Sci. 100 409413.CrossRefGoogle Scholar
Henmi, T. and Wada, K., 1976 Morphology and composition of allophane Amer. Minerai. 61 379390.Google Scholar
Hendershot, W. H., Singleton, G. A. and Lavkulich, L. M., 1979 Variation in surface charge characteristics in a soil chronosequence Soil Sci. Soc. Amer. J. 43 387389.CrossRefGoogle Scholar
Herbillon, A. J., 1974 Modifications des propriétés de charge provoquées par l’altération chimique. Rôle du processus de désilicification Pedologie 24 100118.Google Scholar
Keng, J. C. W. and Uehara, G., 1973 Chemistry, mineralogy and taxonomy of Oxisols and Ultisols Soil Crop. Sci. Soc. Fla. Proc. 33 119126.Google Scholar
Laverdière, M. R. and Weaver, R. M., 1977 Charge characteristics of spodic horizons Soil Sci. Soc. Amer. J. 41 505510.CrossRefGoogle Scholar
Mattson, S., 1928 The electrokinetic and Chemical behavior of the aluminosilicates Soil Sci. 25 289310.CrossRefGoogle Scholar
Morais, F. I., Page, A. L. and Lund, L. J., 1976 The effect of pH, sait concentration and nature of electrolytes on the charge characteristics of Brazilian tropical soils Soil Sci. Soc. Amer. J. 40 521527.CrossRefGoogle Scholar
Parfitt, R. L. and Henmi, T., 1980 Structure of some allophanes from New Zealand Clays & Clay Minerals 28 285294.CrossRefGoogle Scholar
Parfitt, R. L., Furkert, R. J. and Henmi, T., 1980 Identification and structure of two types of allophane from volcanic ash soils and tephra Clays & Clay Minerals 28 328334.CrossRefGoogle Scholar
Parks, G. A., 1967 Aqueous surface chemistry of oxides and complex oxides minerals. Isoelectric point and zero point of charge Adv. Chem. Ser. 67 121160.CrossRefGoogle Scholar
Paterson, E., 1977 Specifie surface area and pore structure of allophanic soil clays Clay Miner. 12 19.CrossRefGoogle Scholar
Perrott, K. W., 1977 Surface charge characteristics ofamorphous aluminosilicates Clays & Clay Minerais 25 417421.CrossRefGoogle Scholar
Perrott, K. W., Smith, B. F. L. and Inkson, R. H. E., 1976 The reaction of fluoride with soils and soil minerais J. Soil Sci. 27 5867.CrossRefGoogle Scholar
Pyman, M. A., 1978 Surface properties ofamorphous mixed oxides Nedland Univ. Western Australia.Google Scholar
Pyman, M. A. and Posner, A. M., 1978 The surface area of amorphous mixed oxides and their relation to potentiometric titration J. Colloid Interface Sci. 66 8594.CrossRefGoogle Scholar
Quantin, P., Fernandez Caldas, E. and Tejedor Salguero, M. L., 1978 Séquence climatique des sols récents de la région septentrionale de Ténérife (Iles Canaries). II Caractéristiques minéralogiques. Interprétation et classification Cah. ORSTOM Ser. Pedol. 16 397412.Google Scholar
Rousseaux, J. M. and Warkentin, B. P., 1976 Surface properties and forces holding water in allophane soils Soil Sci. Soc. Amer. J. 40 446451.CrossRefGoogle Scholar
Schofield, R. K., 1947 Calculation of surface areas from measurements of negative adsorption Nature 160 408410.CrossRefGoogle Scholar
Schofield, R. K., 1949 Effect of pH on electric charges carried by clay particles J. Soil Science 1 18.CrossRefGoogle Scholar
Soil Survey Staff, 1975 Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys .Google Scholar
Tejedor Salguero, M. L., 1974 Andosoles de las Islas Canarias Occidentales Spain University of La Laguna.Google Scholar
Tejedor Salguero, M. L., Fernandez Caldas, E. and Quantin, P., 1978 Séquence climatique des sols récents de la région septentrionale de Ténérife (Iles Canaries). I. Ecologie, morphologie, caractéristiques physico-chimiques Cah. ORSTOM Ser. Pedol. 16 251264.Google Scholar
Uehara, G. and Gillman, G. P., 1980 Charge characteristics of soils with variable and permanent charge minerais. I. Theory Soil Sci. Amer. J. 44 250252.CrossRefGoogle Scholar
Van Raij, B. and Peech, M., 1972 Electrochemical properties of some Oxisols and Alfisols in the tropics Soil Sci. Soc. Amer. Proc. 36 587593.CrossRefGoogle Scholar
Van Reeuwijk, L. P. and de Villiers, J. M., 1970 A model System for allophanes Agrochemophysica 2 7782.Google Scholar
Wada, K., Dixon, J. B. and Weed, S. B., 1977 Allophane and imogolite Minerais in the Soil Environments Madison, Wisconsin American Society Agronomy 603638.Google Scholar
Wada, K., Harada, Y. and HelJer, L., 1969 Effects of sait concentrations and cation species on the measured cation-exchange-capacity of soils and clays Proc. Intern. Clay Conf, Tokyo, 1969, Vol. 1 Jerusalem Israel Univ. Press 561571.Google Scholar
Wada, S. I. and Wada, K., 1977 Density and structure of allophane Clay Miner. 12 289298.CrossRefGoogle Scholar