Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T21:40:06.238Z Has data issue: false hasContentIssue false

The Influence of High-Concentration Na Hexametaphosphate Dispersant on the Rheological Behavior of Aqueous Kaolin Dispersions

Published online by Cambridge University Press:  01 January 2024

Francisco-José Rubio-Hernández*
Affiliation:
DECEM, Universidad de las Fuerzas Armadas, Sangolquí, Ecuador Departamento de Física Aplicada II, Universidad de Málaga, Spain
Nicolás-Marcelo Páez-Flor
Affiliation:
DECEM, Universidad de las Fuerzas Armadas, Sangolquí, Ecuador
Ana-Isabel Gómez-Merino
Affiliation:
Departamento de Física Aplicada II, Universidad de Málaga, Spain
Francisco-José Sánchez-Luque
Affiliation:
Departamento de Física Aplicada II, Universidad de Málaga, Spain
Reinaldo Delgado-García
Affiliation:
DECEM, Universidad de las Fuerzas Armadas, Sangolquí, Ecuador
Leonardo Goyos-Pérez
Affiliation:
DECEM, Universidad de las Fuerzas Armadas, Sangolquí, Ecuador
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Previous studies of dispersant—aqueous kaolin dispersions have indicated clearly that the concentration of the dispersant determines the type of rheological behavior. Those studies focused on the use of dispersant concentrations below the limit of saturation, ignoring what might have happened at concentrations above that limit, and the practical uses to which such information might be put. The present study examined the influence of sodium hexametaphosphate dispersant on the viscous and viscoelastic properties of aqueous kaolin dispersions when its concentration was greater than the saturation limit. A concentric-cylinders geometry sensor system (with a narrow gap between the cylinders) was used to test the rheological behavior of Na hexametaphosphate-aqueous kaolin dispersions. Aqueous kaolin dispersions were viscoplastic, thixotropic, and viscoelastic fluids. The analysis of frequency sweep tests in the linear viscoelastic limit and steady-flow curves led to the conclusion that an increase in the dispersant concentration above the limit of saturation gave way to ‘solid-like’ dispersions.

Type
Article
Copyright
Copyright © Clay Minerals Society 2016

References

Andreola, F. Castellini, E. Ferreira, J.M.F. Olhero, S. and Romagnoli, M., 2006 Effect of sodium hexametaphosphate and ageing on the rheological behaviour of kaolin dispersions Applied Clay Science 31 5664.CrossRefGoogle Scholar
Barnes, H.A., 1999 The yield stress — a review or ‘παντα ρει’ — everything flows? Journal of Non-Newtonian Fluid Mechanics 81 133178.CrossRefGoogle Scholar
Barnes, H.A. Hutton, J.F. and Walters, K., 1989 An Introduction to Rheology New York Elsevier Science Publishers.Google Scholar
Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Handbook of Clay Science Amsterdam Elsevier 502506.Google Scholar
Choi, I.K. Went, W.W. and Smith, R.W., 1993 The effect of a long chain phosphate on the adsorption of collectors on kaolinite Minerals Engineering 6 11911197.CrossRefGoogle Scholar
Eygi, M.S. and Ates-ok, G., 2008 An investigation on utilization of poly-electrolytes as dispersant for kaolin slurry and its slip casting properties Ceramics International 34 19031908.CrossRefGoogle Scholar
Feys, D. Verhoeven, R. and De Schutter, G., 2007 Evaluation of time independent rheological models applicable to fresh self-compacting concrete Applied Rheology 17 56244.CrossRefGoogle Scholar
Greener, J. and Connelly, R.W., 1986 The response of viscoelastic liquids to complex strain histories: the thixotropic loop Journal of Rheology 30 285300.CrossRefGoogle Scholar
Hunter, R.J., 1981 Foundations of Colloid Science New York Academic Press.Google Scholar
Konan, K.L. Peyratout, C. Cerbelaud, M. Smith, A. Bonnet, J.P. and Jacquet, A., 2008 Influence of two dispersants on the rheological behavior of kaolin and illite in concentrated calcium hydroxide dispersions Applied Clay Science 42 252257.CrossRefGoogle Scholar
Kronberg, B. Kuortti, J. and Stenius, P., 1986 Competitive and cooperative adsorption of polymers and surfactants on kaolinite surfaces Colloids and Surfaces 18 411425.CrossRefGoogle Scholar
Kwak, M.S. Ahn, H.J. and Song, K.W., 2015 Rheological investigation of body cream and body lotion in actual application conditions Korea-Australia Rheology Journal 27 241251.CrossRefGoogle Scholar
Le Bell, J.C. Hurskainen, V.T. and Stenius, P.J., 1976 The influence of sodium lignosulphonates on the stability of kaolin dispersions Journal of Colloid and Interface Science 55 6068.CrossRefGoogle Scholar
Li, Y. Zhang, Y. Zheng, J. Guo, H. Yang, C. Li, Z. and Lu, M., 2014 Dispersion and rheological properties of concentrated kaolin suspensions with polycarboxylate copolymers bearing comb-like side chains Journal of the European Ceramic Society 34 137146.CrossRefGoogle Scholar
Loginov, M. Larue, O. Lebovka, N. and Vorobiev, E., 2008 Fluidity of highly concentrated kaolin suspensions: Influence of particle concentration and presence of dispersant Colloids and Surfaces A 325 6471.CrossRefGoogle Scholar
Ma, M., 2011 The dispersive effect of sodium silicate on kaolinite particles in process water: implications for ironore processing Clays and Clay Minerals 59 233239.CrossRefGoogle Scholar
Manfredini, T. Pellacani, G.C. Pozzi, P. and Bonamartini Corradi, A., 1990 Monomeric and oligomeric phosphates as deflocculants of concentrated aqueous clay suspensions Applied Clay Science 5 193201.CrossRefGoogle Scholar
Mewis, J. and Spaull, A.J.B., 1976 Rheology of concentrated dispersions Advances in Colloid and Interface Science 6 173200.CrossRefGoogle Scholar
Morrison, F.A., 2001 Understanding Rheology New York Oxford University Press.Google Scholar
Murray, H.H., 1961 Industrial applications of kaolin Clays and Clay Minerals 10 291298.CrossRefGoogle Scholar
Murray, H.H., 2000 Traditional and new applications for kaolin, smectite, and palygorskite: a general overview Applied Clay Science 17 207221.CrossRefGoogle Scholar
Ouari, N. Kaci, A. Tahakourt, A. and Chaouche, M., 2011 Rheological behaviour of fibre suspensions in non-Newtonian fluids Applied Rheology 21 54801.Google Scholar
Papo, A. Piani, L. and Ricceri, R., 2002 Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: rheological characterization Colloids and Surfaces A 201 219230.CrossRefGoogle Scholar
Rand, B. and Melton, I.E., 1975 Isoelectric point of the edge surface of kaolinite Nature 257 214216.CrossRefGoogle Scholar
Rubio-Hernández, F.J. and Gómez-Merino, A.I., 2008 Time dependent mechanical behavior: the viscoelastic loop Mechanics of Time-Dependent Materials 12 357364.CrossRefGoogle Scholar
Schofield, R.K. and Samson, H.R., 1954 Flocculation of kaolinite due to the attraction of oppositely charged crystal faces Discussion Faraday Society 18 135145.CrossRefGoogle Scholar
Sjöberg, M. Bergström, L. Larsson, A. and Sjöström, E., 1999 The effect of polymer and surfactant adsorption on the colloidal stability and rheology of kaolin dispersions Colloids and Surfaces A 159 197208.CrossRefGoogle Scholar
Tombácz, E. and Szekeres, M., 2006 Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite Applied Clay Science 34 105124.CrossRefGoogle Scholar
Triantafillopoulos, N.G., 1996 Paper Coating Viscoelasticity & its Significance in Blade Coating UK TAPPI Press.Google Scholar
Van Olphen, H., 1963 An Introduction to Clay Colloid Chemistry New York Interscience.Google Scholar
Van Olphen, H., 1964 Internal mutual flocculation in clay suspensions Journal of Colloid Science 19 313322.CrossRefGoogle Scholar