Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-26T22:12:13.508Z Has data issue: false hasContentIssue false

Influence of Al Substitution and Crystal Size on the Room-Temperature Mössbauer Spectrum of Hematite

Published online by Cambridge University Press:  02 April 2024

Enver Murad
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
Udo Schwertmann
Affiliation:
Lehrstuhl für Bodenkunde, Technische Universität München, D-8050 Freising-Weihenstephan, Federal Republic of Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mössbauer spectra of 15 hematites with Al substitutions between 0 and 10 mole % were taken at room temperature. X-ray powder diffraction indicated dimensions of these hematites in the c-direction to range upwards from 27 nm to crystals large enough to show no line broadening. The Mössbauer spectra showed that magnetic hyperfine fields decreased both with increasing Al-for-Fe substitution and with decreasing crystal size. These relationships indicate that hyperfine field variations cannot, as has been done in the past, be unequivocally related to Al substitution alone. Hyperfine field reductions were paralleled by Mössbauer line broadening due to hyperfine field distributions. Only the hematites heated to 1000°C showed a significant variation of quadrupole splittings with Al substitution. No dependence of quadrupole splitting on crystal size was observed, indicating no detectable distortion of coordination polyhedra in the particle size range studied.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Bowen, L. H., Weed, S. B. and Herber, R. H., 1984 Chemical Mössbauer Spectroscopy Mössbauer spectroscopy of soils and sediments 217242.CrossRefGoogle Scholar
DeGrave, E., Bowen, L. H. and Weed, S. B., 1982 Mössbauer study of aluminum-substituted hematites J. Magnetism Magnetic Mater. 27 98108.CrossRefGoogle Scholar
DeGrave, E., Verbeeck, A. E. and Chambaere, D. G., 1985 Influence of small aluminum substitutions on the hematite lattice Phys. Lett. A 107 181184.CrossRefGoogle Scholar
Fysh, S. A. and Clark, P. E., 1982 Aluminous hematite: a Mössbauer study Phys. Chem. Minerals 8 257267.CrossRefGoogle Scholar
Ibanga, I. J., Buol, S. W., Weed, S. B. and Bowen, L. H., 1983 Iron oxides in petroferric materials Soil Sci. Soc. Amer. J. 47 12401246.CrossRefGoogle Scholar
Janot, C. and Gibert, H., 1970 Les constituants du fer dans certaines bauxites naturelles étudiées par effet Mössbauer Bull. Soc. Franç. Minéral. Crist. 93 213223.Google Scholar
Janot, C., Gibert, H. and Tobias, C., 1973 Caractérisation de kaolinites ferrifères par spectrométrie Mössbauer Bull. Soc. Franç. Minéral. Crist. 96 281291.Google Scholar
Jónás, K., Solymár, K. and Zöldi, J., 1980 Some applications of Mössbauer spectroscopy for the quantitative analysis of minerals and mineral mixtures J. Molec. Struct. 60 449452.CrossRefGoogle Scholar
Krén, E., Molnàr, B., Svàb, E., Zsoldos, , 1974 Neutron diffraction study of the (1 - x)αFe2O3-xAl2O3 system Solid State Comm. 15 17071710.CrossRefGoogle Scholar
Kündig, W., Bömmel, H., Constabaris, G. and Lindquist, R. H., 1966 Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect Phys. Rev. 142 327333.CrossRefGoogle Scholar
Morin, F. J., 1950 Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium Phys. Rev. 78 819820.CrossRefGoogle Scholar
Mørup, S., 1983 Magnetic hyperfine splitting in Mössbauer spectra of microcrystals J. Magnetism Magnetic Mater. 37 3950.CrossRefGoogle Scholar
Murad, E., 1984 High-precision determination of magnetic hyperfine fields by Mössbauer spectroscopy using an internal standard J. Phys. E 17 736737.CrossRefGoogle Scholar
Murad, E., 1985 The influence of aluminium substitution on the absorption of gamma-rays in hematite Phys. Lett. A 111 7982.CrossRefGoogle Scholar
Murad, E. and Schwertmann, U., 1983 The influence of aluminium substitution and crystallinity on the Mössbauer spectrum of goethite Clay Miner. 18 301312.CrossRefGoogle Scholar
Nininger, R. C. and Schroeer, D., 1978 Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3 J. Phys. Chem. Solids 39 137144.CrossRefGoogle Scholar
Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M. and Lewis, D. G., 1979 The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites Clays & Clay Minerals 27 105112.CrossRefGoogle Scholar
Schwertmann, U. and Kämpf, N., 1985 Properties of soil goethite and hematite in kaolinitic soils of southern and central Brazil Soil Sci. 139 344350.CrossRefGoogle Scholar
Tsuji, T., Naito, K. and Ishigure, K., 1984 Effect of particle size on Mössbauer parameters of α-Fe2O3 Phys. Stat. Sol. α 82 K57 K61.CrossRefGoogle Scholar
Violet, C. E. and Pipkorn, D. N., 1971 Mössbauer line positions and hyperfine interactions in α iron J. Appl. Phys. 42 43394342.CrossRefGoogle Scholar