Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T07:19:03.747Z Has data issue: false hasContentIssue false

Illite “Crystallinity” Revisited

Published online by Cambridge University Press:  28 February 2024

M. Jaboyedoff*
Affiliation:
Institut de Minéralogie et Pértrographie, Université de Lausanne, BFSH2, 1015, Lausanne, Switzerland Institut de Géologie, Université de Neuchâtel, Rue Emile-Argand, 11, 2007, Neuchâtel, Switzerland
F. Bussy
Affiliation:
Institut de Minéralogie et Pértrographie, Université de Lausanne, BFSH2, 1015, Lausanne, Switzerland
B. Kübler
Affiliation:
Institut de Géologie, Université de Neuchâtel, Rue Emile-Argand, 11, 2007, Neuchâtel, Switzerland
Ph. Thelin
Affiliation:
Institut de Minéralogie et Pértrographie, Université de Lausanne, BFSH2, 1015, Lausanne, Switzerland
*
*E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Kübler Index (KI) is defined as the full width at half-maximum height (FWHM) of the 10-Å X-ray diffraction peak of illite-smectite interstratified (I-S) clay minerals. The only parameters controlling the Kübler Index are assumed to be the mean number of layers (N) in the coherent scattering domains (CSD), the variance of the distribution of the number of layers of the CSD, the mean percentage of smectite layers in I-S (%S), and the probability of layer stacking (Reichweite).

The Kübler-Index measurements on air-dried (KIAD) and ethylene-glycolated (KIEG) samples were compared to N and %S using the NEWMOD computer program to simulate X-ray diffraction patterns. Charts of KIAD versus KIEG corrected for instrumental broadening were made and isolines were mapped for constant N and %S. Isolines allow a direct and rapid determination of N and %S from KI measurements.

The method allows quantification of the metamorphic anchizone limits by considering mean thickness of fundamental particles in MacEwan crystallites. The transition from diagenesis to the anchizone and from the anchizone to the epizone of low-grade metamorphism corresponds to thicknesses of 20- and 70-layer fundamental particles, respectively.

Type
Research Article
Copyright
Copyright © 2001, The Clay Minerals Society

Footnotes

Deceased, 16 September 2000

References

Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.CrossRefGoogle Scholar
Árkai, P., Merriman, R.J., Roberts, B., Peacor, D.R. and Toth, M. (1996) Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: Comparison of XRD and TEM data for diagenetic to epizonal pelites. European Journal of Mineralogy, 8, 1119—1137.CrossRefGoogle Scholar
Bethke, C.M. and Altaner, S.P., 1986 Layer-by-layer mechanism of smectite illitization and application to a new rate law Clays and Clay Minerals 34 136145 10.1346/CCMN.1986.0340204.CrossRefGoogle Scholar
Cashman, K.V. and Ferry, J.M., 1988 Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization. III Metamorphic crystallization Contributions to Mineralogy and Petrology 99 410415.Google Scholar
Dalla Torre, M. Livi, K.J.T. Veblen, D.R. and Frey, M., 1996 White K-mica evolution from phengite to muscovite in shales and shale matrix melange, Diablo Range, California Contributions to Mineralogy and Petrology 123 390405 10.1007/s004100050164.CrossRefGoogle Scholar
Drits, V.A. and Tchoubar, C., 1990 X-ray Diffraction by Disordered Lamellar Structures. Berlin Springer-Verlag 10.1007/978-3-642-74802-8.CrossRefGoogle Scholar
Drits, V.A. Eberl, D.D. and Środoń, J., 1997 XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubier Index and the Scherrer Equation Clays and Clay Minerals 45 461475 10.1346/CCMN.1997.0450315.CrossRefGoogle Scholar
Drits, V.A. Eberl, D.D. and Środoń, J., 1998 XRD measurement of mean thickness, thickness distribution and strain for illite-smectite crystallites by Bertaut-Warren-Av-erbach technique Clays and Clay Minerals 46 3850 10.1346/CCMN.1998.0460105.CrossRefGoogle Scholar
Eberl, D.D. Blum, A., Reynolds, R.C. and Walker, J.R., 1993 Illite crystallite thickness by X-ray diffraction. I Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals, Volume 5 Boulder, Colorado Clay Minerals Society 124153.Google Scholar
Eberl, D. and Hower, J., 1976 Kinetics of illite formation Geological Society of America Bulletin 87 13261330 10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Eberl, D.D. and Srodon, J., 1988 Ostwald ripening and in-terparticle-diffraction effects for illite crystals American Mineralogist 73 13351345.Google Scholar
Eberl, D.D. and Velde, B., 1989 Beyond the Kübier index Clay Minerals 24 571577 10.1180/claymin.1989.024.4.01.CrossRefGoogle Scholar
Eberl, D.D. Srodon, J. Lee, M. Nadeau, P.H. and Northrop, H.R., 1987 Sericite from Silverton caldera, Colorado: Correlation among structure, composition, origin, and particle thickness American Mineralogist 72 914934.Google Scholar
Eberl, D.D. Drits, V.A. and Środoń, J., 1997 Measurement of illite crystallite thickness by XRD method of Bertaut-Warren-Averbach. I Journées Scientifiques en l’honneur de V.A. Drits 2728.Google Scholar
Eberl, D.D. Niiesh, R. Sucha, V. and Tsipursky, S., 1998 XRD measurement of fundamental particle thickness by X-ray diffraction PVP-10 technique Clays and Clay Minerals 46 8997 10.1346/CCMN.1998.0460110.CrossRefGoogle Scholar
Eberl, D.D. Drits, V.A. and Środoń, J., 1998 Deducing growth mechanisms for minerals from the shapes of crystal size distributions American Journal of Science 298 499533 10.2475/ajs.298.6.499.CrossRefGoogle Scholar
Ergun, S., 1968 Direct method for unfolding convolution products: Its application to X-ray scattering intensities Journal of Applied Crystallography 1 1923 10.1107/S0021889868004942.CrossRefGoogle Scholar
Frey, M., 1987 Low Temperature Metamorphism. London Chapman & Hall.Google Scholar
Hendricks, S.D. and Teller, E., 1942 X-ray interference in partially ordered layer lattices Journal Chemical Physics 10 147167 10.1063/1.1723678.CrossRefGoogle Scholar
Howard, S.A. Preston, K.D., Bish, D.L. and Post, J.E., 1989 Profile fitting of powder diffraction patterns. I Modern Powder Diffraction, Volume 20 Washington, D.C. Mineralogical Society of America 217275 10.1515/9781501509018-011.CrossRefGoogle Scholar
Jaboyedoff, M., 1999 Transformations des interstratifiés illite/smectite vers I’illite et la phengite: Un exemple dans la série carbonatée du domaine Briançonnais des Alpes suisses romandes Switzerland University Lausanne.Google Scholar
Jaboyedoff, M. and Thélin, P., 1996 New data on the low-grade metamorphism in the Briançonnais domain of the Prealps, western Switzerland European Journal of Mineralogy 8 577592 10.1127/ejm/8/3/0577.CrossRefGoogle Scholar
Jaboyedoff, M. Kübier, B. and Thélin, P., 1999 An empirical Scherrer equation for weakly swelling mixed-layer minerals, especially illite-smectite Clay Minerals 34 601617 10.1180/000985599546479.CrossRefGoogle Scholar
Jagodzinski, H., 1949 Eindimensionale Fehlordnung in Kristallen und ihr Einfluss auf Röntgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus des Röntgenintensitäten Acta Crystallographica 2 201207 10.1107/S0365110X49000552.CrossRefGoogle Scholar
Jiang, W.T. Peacor, D.R. Arkai, P. Toth, M. and Kim, J.W., 1997 TEM and XRD determination of crystallite size and lattice strain as a function of illite crystallinity in pelitic rocks Journal of Metamorphic Geology 15 267281 10.1111/j.1525-1314.1997.00016.x.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., 1974 X-ray Diffraction Procedures. New York J. Wiley and Sons.Google Scholar
Krumm, S., 1992 Illite als Indikator schwacher Metamorphose. Methodische Untersuchungen, regionale Anwendungen and Vergleiche mit anderen Parametern Erlanger Geologische Abhandlungen 120 175.Google Scholar
Kübier, B., 1964 Les argiles indicateurs de métamorphisme Revue Institut Français du Pétrole XIX 10 10931113.Google Scholar
Kübier, B., 1967 La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. I Etages tectoniques, Colloque de Neuchâtel 1966 Switzerland Edition de la Bacon-nière, Neuchâtel 105121.Google Scholar
Kübier, B., 1968 Evaluation quantitative du métamorphisme par cristallinité de l’illite Bulletin Centre de Recherche Pau SNPA 2 385397.Google Scholar
Kübier, B. and Lagache, M., 1984 Les indicateurs des transformations physiques et chimiques dans la diagenèse, température et calorimétrie. I Thermométrie et Barométrie Géologiques Paris Société Française de Minéralogie et Cristallographie 489596.Google Scholar
Kübier, B. (1990) “Cristallinité” de l’illite et mixed-layer: Brève révision. Schweitzerische Mineralogische Petrographische Mitteilungen, 70, 89—93.Google Scholar
Lanson, B., 1990 Mise en évidence des mécanismes de transformation des interstratifiés illite/smectite au cours de la diagenèse Paris University Paris 6.Google Scholar
Lanson, B., 1997 Decomposition of X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.CrossRefGoogle Scholar
Lanson, B. and Kübier, B., 1994 Experimental determination of coherent scattering domain size distribution of natural mica-like phases with the Warren-Averbach technique Clays and Clay Minerals 42 489494 10.1346/CCMN.1994.0420418.CrossRefGoogle Scholar
Lanson, B. and Velde, B., 1992 Decomposition of X-ray diffraction patterns: A convenient way to describe complex I/S diagenetic evolution Clays and Clay Minerals 40 629643 10.1346/CCMN.1992.0400602.CrossRefGoogle Scholar
Li, G. Peacor, D.R. Buseck, P.R. and Arkai, P., 1998 Modification of illite-muscovite crystallite-size distributions by sample preparation for powder XRD analysis Canadian Mineralogist 36 14351451.Google Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals. I Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 197248.CrossRefGoogle Scholar
Merriman, R.J. Frey, M., Frey, M. and Robinson, D., 1999 Pattern of very low-grade metamorphism in metapelitic rocks. I Low-Grade Metamorphism Oxford, UK Blackwell Science 61107.Google Scholar
Merriman, R.J. Roberts, B. and Peacor, D.R., 1990 A transmission electron microscope study of white mica crystallite size distribution in mudstone to slate transitional sequence, North Wales, UK Contribution to Mineralogy and Petrology 106 2740 10.1007/BF00306406.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford Oxford University Press.Google Scholar
Nieto, E. and Sanchez-Navas, A., 1994 A comparative XRD and TEM study of the physical meaning of the white mica “crystallinity” index European Journal of Mineralogy 6 611621 10.1127/ejm/6/5/0611.CrossRefGoogle Scholar
Peacor, D.R. and Buseck, R.R., 1992 Diagenesis and low-grade metamorphism of shales and slates. I Minerals and Reactions at Atomic Scale: Transmission Electron Microscopy Washington, D.C. Mineralogical Society of America 335380 10.1515/9781501509735-013.CrossRefGoogle Scholar
Pevear, D.R. Schuette, J.F., Reynolds, R.C. and Walker, J.R., 1993 Inverting the NEW-MOD(c) X-ray diffraction forward model for clay minerals using genetic algorithms. I Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals, Volume 5 Boulder, Colorado Clay Minerals Society 2041.Google Scholar
Pytte, A.M. Reynolds, R.C., Naeser, N. and McCulioh, R.C., 1989 The thermal transformation of smectite to illite. I Thermal History of Sedimentary Basins Methods and Case Histories New York Springer-Verlag 133140 10.1007/978-1-4612-3492-0_8.CrossRefGoogle Scholar
Reynolds, R.C. Jr., Brindley, G.W. and Brown, G., 1980 Interstratified clay minerals. I Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 249303.CrossRefGoogle Scholar
Reynolds, R.C. Jr. (1985). NEWMOD a computer program for the calculation of one-dimensional X-ray diffraction patterns of mixed-layered clays. Reynolds, R.C. Jr., 8 Brook Dr., Hanover, New Hampshire.Google Scholar
Reynolds, R.C. Jr., 1986 The Lorentz-polarization factor and preferred orientation in oriented clay aggregates Clays and Clay Minerals 34 359367 10.1346/CCMN.1986.0340402.CrossRefGoogle Scholar
Reynolds, R.C. Jr. (1988). NEWMOD3c for the calculation of one-dimensional X-ray diffraction patterns of mixed-layered clays containing three components. Reynolds, R.C. Jr., 8 Brook Dr., Hanover, New Hampshire.Google Scholar
Reynolds, R.C. Jr., Bish, D.L. and Post, J.E., 1989 Diffraction by small and disordered crystals. I Modern Powder Diffraction Washington, D.C. Mineralogical Society of America 145182 10.1515/9781501509018-009.CrossRefGoogle Scholar
Reynolds, R.C. Jr. and Reynolds, R.C. III (1996). NEWMOD for Windows a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Reynolds, R.C. Jr., 8 Brook Dr., Hanover, New Hampshire.Google Scholar
Robinson, D. Warr, L.N. and Bevins, R.E., 1990 The illite ’crystallinity’ technique: A critical appraisal of its precision Journal of Metamorphic Geology 8 333344 10.1111/j.1525-1314.1990.tb00476.x.CrossRefGoogle Scholar
Scherrer, P., 1918 Bestimmung der grosse und inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen Nachrichten Gesellschaft Wissenschaft Göttingen 26 98100.Google Scholar
Spry, A., 1983 Metamorphic Textures. Oxford, UK Pergamon International Libray.Google Scholar
Srodon, J. Eberl, D.D. and Bailey, S.W., 1984 Illite. I Micas 495544 10.1515/9781501508820-016.CrossRefGoogle Scholar
Srodon, J. Andreoli, C. Elsass, F. and Robert, M., 1990 Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock Clays and Clay Minerals 38 373379 10.1346/CCMN.1990.0380406.CrossRefGoogle Scholar
Srodon, J. Elsass, F. McHardy, W.J. and Morgan, D.J., 1992 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158 10.1180/claymin.1992.027.2.01.CrossRefGoogle Scholar
Stokes, A.R., 1948 A numerical Fourier-analysis method for correction of widths and shapes of lines on X-rays powder photographs Proceedings of the Physical Society 61 382391 10.1088/0959-5309/61/4/311.CrossRefGoogle Scholar
Velde, B. and Vasseur, G., 1992 Estimation of the diagenetic smectite to illite transformation in time-temperature space American Mineralogist 77 910.Google Scholar
Wang, H. Stern, W.B. and Frey, M., 1995 Deconvolution of the X-ray “Illite” 10 Å complex: A case study of Helvetic sediments from eastern Switzerland Schweitzerische Mineralogische Petrographischee Mitteilungen 75 187199.Google Scholar
Warr, L.N. and Rice, H.N., 1994 Interlaboratory standardization and calibration of clay mineral crystallinity and crystallite size data Journal of Metamorphic Geology 12 141152 10.1111/j.1525-1314.1994.tb00010.x.CrossRefGoogle Scholar
Warr, L.N. and Nieto, E., 1998 Crystallite thickness and defect density of phyllosilicates in low temperature metamorphic pelites: A TEM and XRD study of clay-mineral crystallinity-index standards Canadian Mineralogist 36 14531474.Google Scholar
Warren, B.E. and Averbach, B.L., 1950 The effect of cold work distortion on X-ray patterns Journal of Applied Physics 21 595599 10.1063/1.1699713.CrossRefGoogle Scholar
Watanabe, T., 1988 The structural model of illite/smectite mterstratified minerals and the diagram for its identification Clay Sciences 1 97114.Google Scholar
Weaver, E.W., 1960 Possible uses of clay minerals in search for oil Bulletin of the American Association of Petroleum Geologists 44 15051518.Google Scholar
Weber, E. Dunoyer de Segonsac, G. and Economou, C., 1976 Une nouvelle expression de la “cristallinité” de l’illite et des micas. Notion “d’épaisseur apparente” des cristallites Compte Rendus Sommaires Société Géologique de France 5 225227.Google Scholar