Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T04:38:54.107Z Has data issue: false hasContentIssue false

Hydroxy-Cu-Vermiculite Formed By the Weathering of Fe-Biotites at Salobo, Carajas, Brazil

Published online by Cambridge University Press:  02 April 2024

Philippe Ildefonse
Affiliation:
Laboratoire de Pédologie, Université Paris 7, 2 place Jussieu, 75251, Paris Cedex 05, France
Alain Manceau
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA 0-9, Universités Paris 6 et 7, 4 Place Jussieu, 75230 Paris Cedex 05, France Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (LURE), C.N.R.S., 91450, Orsay, France
Dominique Prost
Affiliation:
Laboratoire de Pédologie, Université Paris 7, 2 place Jussieu, 75251, Paris Cedex 05, France
Maria Christina Toledo Groke
Affiliation:
Institute di Geosciencias, Universidad de Sao Paulo, Caixa Postal 20-899, CEP 1014 98 Sao Paulo, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Weathering of a copper stratiform deposit (schist) at Salobo, Brazil, has produced two distinct Cu-bearing minerals from a biotite parent: vermiculite and a manganese oxide containing as much as 13% and 25% CuO, respectively. Manganiferous products were formed as the result of an interhorizon transfer of solutions through a fissure system. Thus, the structural orientation of the schists was a major factor in controlling the supergene concentration of Cu. The Cu-vermiculite formed by the weathering of Fe-biotite, although the unweathered biotites in the parent rocks were found to contain no copper, suggesting that Cu was supplied by weathering solutions. X-ray powder diffraction (XRD) and cationexchange capacity data for the Cu-vermiculite differ from those of typical Mg-vermiculite and are similar to those of hydroxy- Al-vermiculite. A comparison of the XRD pattern of the Cu-vermiculite with that of a Cu-free vermiculite indicates that Cu atoms are located in interlayer sites. Cu probably occurs in a brucite-like layer. The position and structure of the Cu K-absorption spectrum suggest that the Cu is divalent and exists in 6-fold coordination.

Résumé

Résumé

L'altération supergéne des schistes du dépôt stratiforme de cuivre de Salobo (Brésil) a produit deux phases minérales porteuses de cuivre, associées aux biotites: une vermiculite et des oxydes de manganèse contenant respectivement de 13% à 25% de CuO. Les produits manganésifères résultent de transferts interhorizons d'ions en solution dans le système fissural. Aussi, l'orientation structurale des schistes est un facteur majeur qui contrôle l'accumulation supergène du cuivre. La vermiculite Cu se forme à partir de l'altération des biotites Fe de la roche saine. Les biotites saines, cependant, ne contiennent pas de cuivre ce qui suggère que cet élément est fourni par les solutions d'altération. Les données de la diffraction des rayons X et les mesures de la capacité d’échange de cations obtenues à partir de la vermiculite Cu diffèrent notablement de celles de vermiculite Mg classique. Par contre, elles sont proches de celles des vermiculites hydroxy-alumineuses, bien connues par ailleurs. La comparaison des spectres de diffraction de la vermiculite Cu avec ceux de la vermiculite non cuprifère de la base du profil montre que les atomes de Cu sont localisés en sites interfoliaires. La position et la structure des spectres d'absorption X au seuil K du cuivre suggèrent que les atomes de cuivre sont divalents et en position hexacoordonnée.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Bair, R. A. and Goddard, W. A., 1980 Ab initio studies of the X-ray absorption edge in copper complexes: I. Atomic Cu2+ and Cu(II)Cl2 Phys. Review B. 11 27672776.CrossRefGoogle Scholar
Barshad, I., 1948 Vermiculite and its relation to biotite as revealed by exchange reactions, X-ray analysis, differential thermal curves, and water content Amer. Mineral. 33 655678.Google Scholar
Bassett, W. A., 1958 Copper vermiculites from Northern Rhodesia Amer. Mineral. 43 11121133.Google Scholar
Bisdom, E. B. A., Stoops, G., Delvigne, J., Curmi, P. and Altemuller, H. J., 1982 Micromorphology of weathering biotite and its secondary products Pédologie 32 225252.Google Scholar
Boulangé, B. and Bocquier, G., 1983 Le rôle du fer dans la formation des pisolites alumineux au sein des cuirasses bauxitiques latéritiques Sci. Géol. Bull. 72 2936.Google Scholar
Brindley, G. W. and Gillery, F. H., 1956 X-ray identification of chlorite species Amer. Mineral. 41 169186.Google Scholar
Burns, R. G., 1970 Mineralogical Application of Crystal Field Theory Cambridge Cambridge University Press.Google Scholar
Calas, G., Bassett, W. A., Petiau, J., Steinberg, M., Tchoubar, D. and Zarka, A., 1984 Some mineralogical applications of synchrotron radiation Phys. Chem. Miner. 11 1736.CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1962 Rock Forming Minerals: Vol. 3. Sheet Silicates London Longmans.Google Scholar
Farias, N. F. and Saueressing, R., 1984 Jazida de cobre do Salobo 3A Anais I Simposio de Geologia da Amazonia, Belem 6373.Google Scholar
Foster, M. D. (1960) Interpretation of the composition of trioctahedral micas: U.S. Geol. Sum. Prof. Pap. 354B, 49 pp.Google Scholar
Foster, M. D., Swineford, A. and Franks, P. C., 1963 Interpretation of the composition of vermiculites and hydrobiotites Clays and Clay Minerals, Proc. 10th Natl. Conf, Austin, Texas, 1961 New York Pergamon Press 7089.Google Scholar
Garrels, R. M. and Christ, C. L., 1967 Equilibre des minéraux et de leurs solutions aqueuses Monographies de Chimie Minérale Paris Gauthier-Villars.Google Scholar
Hannoyer, B., Durr, J., Calas, G., Petiau, J. and Lenglet, M., 1982 Caractérisation d’oxydes de cuivre par spectrométrie d’absorption X Mater. Res. Bull. 17 435442.CrossRefGoogle Scholar
Jackson, M. L. and Swineford, A., 1963 Interlayering of expansible layer silicates in soils by chemical weathering Clays and Clay Minerals, Proc. 11th Natl. Conf, Ottawa, Ontario, 1962 New York Pergamon Press 2946.Google Scholar
Keller, W. D., 1977 Scan electron micrographs of kaolins collected from diverse environments of origin. IV. Georgia kaolin and kaolinizing source rocks Clays & Clay Minerals 25 311345.CrossRefGoogle Scholar
Martins, L. P. B., Saveressing, R. and Melo Vieira, M. A., 1982 Aspectos petrographicos das principais litologias da sequencia Salobo Anais do I Symposio de Geologia da Amazonia, Belem 253262.Google Scholar
Nahon, D., Janot, C., Karpoff, A. M., Paquet, H. and Tardy, Y., 1976 Mineralogy, petrography and structures of iron crusts (ferricretes) developed on sandstones in the western part of Senegal Geoderma 19 263277.CrossRefGoogle Scholar
Nahon, D. and Bocquier, G., 1983 Petrology of element transfers in weathering and soil systems Sci. Géol. Mém. 72 111119.Google Scholar
Newman, A. C. D. and Brown, G., 1966 Chemical changes during the alteration of micas Clay Miner. 6 297309.CrossRefGoogle Scholar
Novikoff, A., Tsawlassou, G., Gac, J. Y., Bourgeat, F. and Tardy, Y., 1972 Altération des biotites dans les arènes des pays tempérés, tropicaux et équatoriaux Sci. Géol. Bull. 25 287305.Google Scholar
Pelletier, B., 1983 Localisation du nickel dans les minerais garniéritiques de Nouvelle-Calédonie Sci. Géol. Mém. 73 173183.Google Scholar
Petruk, W., 1964 Determination of the heavy atom content in chlorite by means of the X-ray diffractometer Amer. Mineral. 49 6171.Google Scholar
Prost, D., Ildefonse, P., Groke, M. C. T., Melfi, A. J., Delvigne, J. and Parisot, J. C., 1984 Alteraçao dos minerais na zona supergena da formaçao cuprifera do Salobo 3A (Serra dos Carajas). Localizaçao do cobre nos produtos seeundarios Proc. Simposio de Geologia 33th .Google Scholar
Rich, C. I., 1968 Hydroxy-interlayers in expansible layer silicates Clays & Clay Minerals 16 1530.CrossRefGoogle Scholar
Robert, M., 1971 Etude expérimentale de l’évolution des micas (biotites). I. Les processus de vermiculitisation Ann. Agron. 11 4393.Google Scholar
Shirozu, H. and Bailey, S. W., 1966 Crystal structure of a two-layer Mg-vermiculite Amer. Minerai. 51 11241143.Google Scholar
Tardy, Y. and Gac, J. Y., 1968 Minéraux argileux dans quelques sols et arènes des Vosges cristallines. Présence de vermiculite Al. Hypothèse de la formation des vermiculites et montmorillonites Bull. Serv. Cart. Géol. Als. Lorr. 2 285304.Google Scholar
Trescases, J. J., 1975 L’évolution géochimique des roches ultrabasiques en zone tropicale et la formation des gisements nickélifères de Nouvelle Calédonie Thèse Se. Strasbourg, Mém. ORSTOMl% .Google Scholar
Van Oosterwyck-Gastuche, M. C., 1970 La structure de la chrysocolle CR. Acad. Sci. Paris D 271 18371840.Google Scholar
Walker, G. F., 1949 The decomposition of biotite in the soil Mineral. Mag. 28 693703.Google Scholar
Wey, R., Le Dred, R. and Schoenfelder, J., 1966 Transformation d’un mica partiellement chloritisé en vermiculite par oxydation du fer(II) Bull. Gr. Fr. Argiles 12 107114.CrossRefGoogle Scholar
Wilson, M. J., 1966 The weathering of biotite in some Aberdeenshire soils Mineral. Mag. 35 10801093.Google Scholar
Wilson, M. J., 1970 A study of weathering in a soil derived from a biotite-hornblende rock. I. Weathering of biotite Clay Miner. 8 291303.CrossRefGoogle Scholar