Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T21:08:42.206Z Has data issue: false hasContentIssue false

Hydroxy-Chromium Smectite

Published online by Cambridge University Press:  28 February 2024

C. Volzone
Affiliation:
Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Cno. Centenario y 506, CC49 (1897), M. B. Gonnet, Argentina
A. M. Cesio
Affiliation:
Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Cno. Centenario y 506, CC49 (1897), M. B. Gonnet, Argentina
R. M. Torres Sánchez
Affiliation:
Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Cno. Centenario y 506, CC49 (1897), M. B. Gonnet, Argentina
E. Pereira
Affiliation:
Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC), Cno. Centenario y 506, CC49 (1897), M. B. Gonnet, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydroxy-chromium solutions were prepared from chromium nitrate solutions by adding NaOH with OH/Cr = 2.

The solutions were treated at 20°C and 60°C. The hydrolysis times were from 1 to 100 days. Polymeric species in hydrolyzed chromium solutions were followed by visible absorption spectra within the range 325–800 nm and by pH measurement. OH-Cr-smectite with high d(001) spacing (2.07 nm) was obtained when hydroxy-chromium solution was prepared at 60°C and with 1-day hydrolysis. When this sample was heated up to 350°C the basal spacing collapsed at 1.8 nm.

The samples were characterized by X-ray diffraction and N2 adsorption-desorption isotherms.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Ardon, M. and Plane, R. A., 1959 The formation of a dinuclear Cr(III) species by oxidation of chromous solutions J. Am. Chem. Soc. 81 31973200 10.1021/ja01522a008.CrossRefGoogle Scholar
Barret, E. P., Joyner, L. G. and Halenda, P. H., 1961 The determination of pore volume and area distribution in porous substances. I. Computation from nitrogen isotherms J. Am. Chem. Soc. 73 373380 10.1021/ja01145a126.CrossRefGoogle Scholar
Brindley, G. W. and Yamanaka, S., 1979 A study of hy-droxy-chromium montmorillonites and the form of the hy-droxy-chromium polymers Amer. Mineral. 64 830835.Google Scholar
Carr, M. R., 1985 Hydration states of interlamellar chromium ions in montmorillonite Clays & Clay Minerals 33 357361 10.1346/CCMN.1985.0330413.CrossRefGoogle Scholar
Finholt, J. E., Thompson, M. E. and Connick, R. E., 1981 Hydrolytic polymerization of Chromium(III). 2. A trimeric species Inorg. Chem. 20 41514155 10.1021/ic50226a024.CrossRefGoogle Scholar
Gregg, S. J. and Sing, K. S. W., 1982 Adsorption Surface Area and Porosity London Academic Press.Google Scholar
Kolaczkowski, R. W. and Plane, R. A., 1964 The characterization of [Cr(H,O)4OH]2 +4 and its formation by oxygen oxidation of chromous solution Inorg. Chem. 3 322324 10.1021/ic50013a004.CrossRefGoogle Scholar
Laswick, J. A. and Plane, R. A., 1959 Hydrolytic polymerization in boiled chromic solutions J. Am. Chem. Soc. 81 35643567 10.1021/ja01523a020.CrossRefGoogle Scholar
Lippens, B. C. and de Boer, J. H., 1965 Studies on pore systems in catalysts J. Catal. 4 319323 10.1016/0021-9517(65)90307-6.CrossRefGoogle Scholar
Orr, C. and Dalla Valle, J. M., 1959 Fine Particle Measurement Size, Surface, and Pore Volume New York The Macmillan Co..Google Scholar
Pierce, C., 1953 Computation of pore size from physical adsorption data J. Phys. Chem. 57 149152 10.1021/j150503a005.CrossRefGoogle Scholar
Pinnavaia, T. J., Tzou, M. S. and Landau, S. D., 1985 New chromia pillared clay catalysts J. Am. Chem. Soc. 107 47834785 10.1021/ja00302a033.CrossRefGoogle Scholar
Rengasamy, P. and Oades, J. M., 1978 Interaction of monomelic and polymeric species of metal ions with clay surfaces. III. Aluminium (III) and Chromium (III) Aust. J. Soil Res. 16 5366 10.1071/SR9780053.CrossRefGoogle Scholar
Sing, K. S. W., (1970) Surface Area Determinations, Everett, D. H., and Ottewall, R. H., eds., Butterworths, London, 25 pp.CrossRefGoogle Scholar
Stünzi, H. and Marty, W., 1983 Early stages of the hydrolysis of chromium(III) in aqueous solution. 1. Characterization of a tetrameric species Inorg. Chem. 22 21452150 10.1021/ic00157a012.CrossRefGoogle Scholar
Stünzi, H., Spiccia, L., Rotzinger, R. P. and Marty, W., 1989 Early stages of the hydrolysis of chromium (III) in aqueous solution. 4. Stability constant of the hydrolytic dimer, trimer, and tetramer at 25°C and I = 1.0 M Inorg. Chem. 28 6671 10.1021/ic00300a015.CrossRefGoogle Scholar
Thompson, M. and Connick, R. E., 1981 Hydrolytic polymerization of chromium(III). 1. Two dimeric species Inorg. Chem. 20 22792285 10.1021/ic50221a068.CrossRefGoogle Scholar
Tzou, M. S. and Pinnavaia, T. J., 1988 Chromia pillared clays Cat. Today 2 243259 10.1016/0920-5861(88)85007-7.CrossRefGoogle Scholar
Vaughan, D E W Lussier, R. J. and Rees, L. V. C., 1980 Preparation of molecular sieves on pillared interlayered clays(PILC) Proceedings of the 5th International Zeolite Conference London Heyden Press 94101.Google Scholar
Vaughan, D. E. W., Flank, W. H. and Whyte, T. E., 1988 Recent developments in pillared interlayered clays Perspectives in Molecular Sieve Science Washington, D.C. American Chemical Society 308323 10.1021/bk-1988-0368.ch019.CrossRefGoogle Scholar
Wheeler, A. and Emmet, P. H., 1955 Reaction rates and selectivity in catalysts pores Catalysts, Vol. II New York Rainhold Publishing Corp. 118.Google Scholar