Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T09:16:40.309Z Has data issue: false hasContentIssue false

Hydrothermal Synthesis (250°C) of Copper-Substituted Kaolinites

Published online by Cambridge University Press:  28 February 2024

Sabine Petit
Affiliation:
"Argiles, Sols & Atérations", URA CNRS 721, Université de Poitiers, 40 Avenue du Recteur Pineau, F-86022, Poitiers Cedex, France
Alain Decarreau
Affiliation:
"Argiles, Sols & Atérations", URA CNRS 721, Université de Poitiers, 40 Avenue du Recteur Pineau, F-86022, Poitiers Cedex, France
Christine Mosser
Affiliation:
Centre de Géochimie de la surface, UPR CNRS 6251, 1 rue Blessig, 67084 Strasbourg Cedex, France
Gabrielle Ehret
Affiliation:
IPCMS, CNRS, 23, rue du loess, F-67037, Strasbourg Cedex, France
Olivier Grauby
Affiliation:
Centre de Recherche sur les Mécanismes de la Croissance Cristalline, UPR CNRS 7251, Campus de Luminy, Case 913, F-13288 Marseille, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To obtain Cu-kaolinites with a controlled range of chemical compositions, syntheses were performed by hydrothermally ageing gels with kaolinite stoichiometric compositions. Gels were prepared with sodium metasilicate and nitrates of octahedral cations. Temperature of synthesis was 250°C with a corresponding equilibrium water pressure of 38 bars.

Three samples with copper contents ranging from 0.1 to 7% and another one with the chemical composition of the Cu end-member were synthesized. While this fourth sample led to tenorite after the hydrothermal treatment, the three others crystallized well into kaolinite.

Up to almost 1% CuO was measured by TEM in some isolated ‘clean’ and hexagonal kaolinite particles. EPR and XPS spectroscopies were consistent with an octahedral position of Cu2+. In IR spectra, vAl-OH-Cu absorption bands were not observed, but vAl2OH bands appeared more and more blurred when Cu content of samples increased. Weak bands situated at 868 cm−1 and 840 cm−1 are tentatively attributed to δAlCuOH. By differential thermal analysis, a downward shift of 20°C in temperature of the endothermic peak from the less Cu-rich sample to the most Cu-rich one, argued for the existence of some Al-OH-Cu bonds, whose binding energies are presumed to be less than the Al-OH-Al ones.

In view of these results, Cu2+ appears incorporated in the octahedral sheet of kaolinite. Moreover, this incorporation is made without major perturbation of the kaolinite structure.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Barrios, J., Plançon, A., Cruz, M. I., and Tchoubar, C. 1977. Qualitative and quantitative study of stacking faults in a hydrazine treated kaolinite—Relationship with infrared spectra. Clays Clay Miner. 25: 422429.Google Scholar
Bookin, A. S., Drits, V. A., Plançon, A., and Tchoubar, C. 1989. Stacking faults in kaolin-group minerals in the light of real structural features. Clays Clay Miner. 37: 297307.Google Scholar
Brindley, G. W., and Porter, A. R. D. 1978. Occurrence of dickite in Jamaica—Ordered and disordered varieties. Amer. Miner. 63: 554562.Google Scholar
Brindley, G. W., and Brown, G. 1980. Crystal Structures of Clay Minerals and their X-Ray Identification. London: Mineralogical Society, 495 pp.Google Scholar
Brindley, G. W., Kao, C. C., Harrison, J. L., Lipsicas, M., and Raythatha, R. 1986. Relation between structural disorder and other characteristics of kaolinites and dickites. Clays Clay Miner. 34: 239249.Google Scholar
Brookins, D. G., 1973. Chemical and X-ray investigation of chromiferous kaolinite (“miloschite”) from The Geysers, Sonoma County, California. Clays Clay Miner. 21: 421422.Google Scholar
Brown, D. R., and Kevan, L. 1988. Aqueous coordination and location of exchangeable Cu2+ cations in montmorillonite clay studied by electron spin resonance and electron spin-echo modulation. J. Amer. Soc. 110: 27432748.Google Scholar
Calvert, C. S., 1981. Chemistry and Mineralogy of Iron Substituted Kaolinite in Natural and Synthetic Systems. Ann Arbor, Michigan: University Microfilms International, 224 pp.Google Scholar
Cases, J. M., Liétard, O., Yvon, J., and Delon, J. F. 1982. Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull. Mineral. 105: 439455.Google Scholar
Chukhrov, F. V., Zvyagin, B. B., Gorshikov, A. I., Yermilova, L. P., and Rudniskaya, Y. S. 1969a. The nature of medmontite. Int. Geol. Rev. 11: 13551359.Google Scholar
Chukhrov, F. V., Zvyagin, B. B., Yermilova, L. P., Gorshikov, A. I., and Rudniskaya, Y. S. 1969b. The Relation Between Chrysocolla, Medmontite and Copper-Halloysite. Proc. Int. Clay Conf., Tokyo, 141150.Google Scholar
Clementz, D. M., Pinnavaia, T. J., and Mortland, M. M. 1973. Stereochemistry of hydrated copper (II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study. J. Phys. Chem. 77: 196200.Google Scholar
Clementz, D. M., Mortland, M. M., and Pinnavaia, T. J. 1974. Properties of reduced charge montmorillonites: Hydrated Cu(II) ions as a spectroscopic probe. Clays Clay Miner. 22: 4957.Google Scholar
Cliff, G., and Lorimer, G. W. 1975. The quantitative analysis of thin specimens. J. Microscopy 103: 203207.Google Scholar
Decarreau, A., 1983. Etude expérimentale de la cristallogenèse des smectites. Mesure des coefficients de partage smectite trioctaédrique-solution acqueuse pour les métaux M2+ de la première série de transition. Mém. Sci. Géol. 74: 190 pp.Google Scholar
Decarreau, A., Grauby, O., and Petit, S. 1992. The actual distribution of octahedral cations in 2: 1 clay minerals: results from clay synthesis. Applied Clay Science 7: 147167.Google Scholar
De Kimpe, C. R., Kodama, H., and Rivard, R. 1981. Hydrothermal formation of a kaolinite-like product from noncrystalline aluminosilicate gels. Clays Clay Miner. 29: 446450.Google Scholar
Dennefeld, F., 1970. Contribution à la synthèse des phyllites alumineuses du type kaolin. Thesis, Univ. Strasbourg, France.Google Scholar
De Vynck, I., 1980. Synthese de phyllosilicates de cobalt, de nickel, de cuivre et de zinc. Silicates Industriels 3: 5166.Google Scholar
Drits, V. A., and Tchoubar, C. 1990. X-ray Diffraction by Disordered Lamellar Structures. Theory and Applications to Microdivided Silicates and Carbons. Berlin Heidelberg: Springer Verlag. 371 pp.Google Scholar
Farmer, V. C., 1964. Infrared absorption of hydroxyl groups in kaolinite. Science, 145: 11891190.Google Scholar
Farmer, V. C., 1974. The layer silicates. In The Infrared Spectra of Minerals. Farmer, V. C., ed. London: Mineralogical Society, 331365.Google Scholar
Fripiat, J. J., and Gastuche, M. C. 1961. Réflexions sur les problèmes de synthèse. Coll. Int. CNRS, n°105, Genèse et synthèse des Argiles, Paris, 207210.Google Scholar
Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. 1993. The beidellite-saponite series: An experimental approach. Eur. J. Mineral. 5: 623635.Google Scholar
Grauby, O., Petit, S., Decarreau, A., and Baronnet, A. 1993. The nontronite-saponite series: An experimental approach. Eur. J. Mineral. 6: 99112.Google Scholar
Hinckley, D. N., 1963. Variability in “cristallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 13: 229235.Google Scholar
Ildefonse, P., Manceau, A., Prost, D., and Toledo-Groke, M. C. 1986. Hydroxy-Cu vermiculite formed by the weathering of Fe-biotites at Salobo, Carajas, Brazil. Clays Clay Miner. 34: 338345.Google Scholar
Jackson, M. L., 1958. Soil Chemical Analysis. 3rd ed. Englwoods Cliffs, New Jersey: Prentice Hall, 498 pp.Google Scholar
Jepson, W. B., and Rowse, J. B. 1975. The composition of kaolinite. An electron microscope microprobe study. Clays Clay Miner. 23: 310317.Google Scholar
Johnston, C. T., Agnew, S. F., and Bish, D. L. 1990. Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite. Clays Clay Miner. 38: 573583.Google Scholar
Liétard, O., 1977. Contribution à l'étude des propriétés physicochimiques, cristallochimiques et morphologiques des kaolins. Thesis, Nancy, 320 pp.Google Scholar
Mackenzie, R. C., 1970. Differential Thermal Analysis. Volume I: Fundamental Aspects. Mackenzie, A. C., ed. London: Acad. Press, 775 pp.Google Scholar
Macksimovic, Z., and Brindley, G. W. 1980. Hydrothermal alteration of a serpentinite near Takovo, Yugoslavia, to chromium-bearing illite/smectite, kaolinite, tosudite, and halloysite. Clays Clay Miner. 28: 295302.Google Scholar
Macksimovic, Z., White, J. L., and Logar, M. 1981. Chromium-bearing kaolinite from Teslic, Yugoslavia. Clays Clay Miner. 29: 213218.Google Scholar
Martin, F., Petit, S., Grauby, O., Noack, Y., and Decarreau, A. 1995. Ga/Al substitutions in synthetic kaolinites and smectites: XRD, FTIR and TEM studies. Clay Miner. (in press).Google Scholar
McBride. 1976. Origin and position of exchange sites in kaolinite: An ESR study. Clays Clay Miner. 24: 8892.Google Scholar
McBride, M. B., and Mortland, M. M. 1974. Copper (II) interactions with montmorillonites: Evidence from physical methods. Soil Sci. Soc. Amer. Proc. 38: 408414.Google Scholar
Meads, R. E., and Malden, P. J. 1975. Electron Spin Resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. 10: 313345.Google Scholar
Mestdagh, M. M., Herbillon, A. J., Rodrique, L., and Rouxhet, P. G. 1982. Evaluation du rôle du fer structural sur la cristallinité des kaolinites. Bull. Minéral. 105: 457466.Google Scholar
Miyawaki, R., Tomura, S., Samejima, S., Okazaki, M., Mizuta, H., Maruyama, S. I., and Shibasaki, Y. 1991. Effects of solution chemistry on the hydrothermal synthesis of kaolinite. Clays Clay Miner. 39: 498508.Google Scholar
Mosser, C., Mestdagh, M., Decarreau, A., and Herbillon, A. 1990. Spectroscopic (ESR, EXAFS) evidence of Cu for (Al-Mg) substitution in octahedral sheets of smectites. Clay Miner. 25: 271282.Google Scholar
Mosser, C., Mosser, A., Romeo, M., Petit, S., and Decarreau, A. 1992. Natural and synthetic copper phyllosilicates studied by XPS. Clays Clay Miner. 40: 593599.Google Scholar
Mosser, C., Petit, S., and Mestdagh, M. 1993. ESR and IR evidences of chromium in kaolinites. Clay Miner. 28: 353364.Google Scholar
Pafomov, N. N., Tarasevich, Yu. I., Sivalov, E. G., and Sil'chenko, V. L. 1979. EPR and optical spectroscopic study of the state of copper (2+) exchange cations in montmorillonite and kaolinite. Dopov. Akad. Nauk. Ukr. SSSR, Ser. B: Geol., Khim. Biol. Nauki, (8), 642646.Google Scholar
Paquet, H., Duplay, J., and Nahor, D. 1982. Variations in the composition of phyllosilicates monoparticles in a weathering profile of ultrabasic rocks. Developments in Sedimentology, 35, H. Van Olphen & F. Veniale Ed., Int. Clay Conf., Elsevier, 395603.Google Scholar
Petit, S., 1990. Etude cristallochimique de kaolinites ferrifères et cuprifères de synthèse (150–250°C). Thesis, Poitiers. 237 pp.Google Scholar
Petit, S., and Decarreau, A. 1990. Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites. Clay Miner. 25: 181196.Google Scholar
Petit, S., Prot, T., Decarreau, A., Mosser, C., and Toledo-Groke, M. C. 1992. Crystallochemical study of a population of particles in smectites from a lateritic weathering profile. Clays Clay Miner. 40: 436445.Google Scholar
Pilipenko, A. T., Kornilovich, B. Yu., Vasil'ev, N. G., and Lysenko, V. I. 1987. Aqueous complexes of copper (II) on lateral faces of kaolinites and their transformation during mechanical activation. Dokl. Akad. Nauk. Ukr. SSSR, Ser. B: Geol., Khim. Biol. Nauki, (1), 5254.Google Scholar
Pilipenko, A. T., Kornilovich, B. Yu., Lysenko, V. I., and Malyarenko, V. V. 1989. Aqueous complexes of copper (II) on the surface of activated kaolinites. Dokl. Akad. Nauk. Ukr. SSSR, (Phys. Chem) 305 (6), 14081411.Google Scholar
Plançon, A., and Tchoubar, C. 1977. Determination of structural defects in phyllosilicates by X-ray powder diffraction. II. Nature and proportion of defects in natural kaolinites. Clays Clay Miner. 25: 436450.Google Scholar
Plançon, A., Giese, R. F., and Snyder, R. 1988. The Hinckley index for kaolinites. Clay Miner. 37: 203210.Google Scholar
Plançon, A., Giese, R. F., Snyder, R., Drits, V. A., and Bookin, A. S. 1989. Stacking faults in kaolin-group minerals: Defect structures of kaolinite. Clays Clay Miner. 23: 249260.Google Scholar
Rengasamy, P., 1976. Substitution of iron and titanium in kaolinites. Clays Clay Miner. 24: 264266.Google Scholar
Shingh, B., and Gilkes, R. J. 1991. Weathering of a chromian muscovite to kaolinite. Clays Clay Miner. 39: 571579.Google Scholar
Sil'chenko, V. A., Pafomov, N. N., Tarasevich, Yu. I., Matyash, I. V., and Suyunova, Z. E. 1971. Electron paramagnetic resonance of Cu2+ exchange cations in kaolinite. Ukr. Khim. Zh., 37, (12), 12381241.Google Scholar
Stubican, V., and Roy, R. 1961. Isomorphous substitution and infra-red spectra of the layer lattice silicates. Amer. Miner. 46: 3251.Google Scholar
Sun, M. S., 1963. The nature of chrysocolla from Inspiration mine, Arizona. Amer. Miner. 48: 469658.Google Scholar
Tomura, S., Shibasaki, Y., and Mizuta, H. 1983. Spherical kaolinite: Synthesis and mineralogical properties. Clays Clay Miner. 31: 431–421.Google Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Sunagawa, I. 1985a. Origin of the morphology of spherical kaolinite. Clay Science 6: 159166.Google Scholar
Tomura, S., Shibasaki, Y., Mizuta, H., and Kitamura, M. 1985b. Growth conditions and genesis of spherical and platy kaolinite. Clays Clay Miner. 33: 200206.Google Scholar
Van Oosterwyck-Gastuche, M. C., 1970. La structure de la chrysocolle. C. R. Acad. Sc. Paris, 271, p. 18371840.Google Scholar
Van Oosterwyck-Gastuche, M. C., and Iglesia, A. La. 1978. Kaolinite synthesis. II. A review and discussion of the factors influencing the rate process. Clays Clay Miner. 26: 409417.Google Scholar
Weaver, C. E., 1976. The nature of TiO2 in kaolinite. Clays Clay Miner. 24: 215218.Google Scholar
Wertz, J. E., and Bolton, J. R. 1972. Electron Spin Resonance. New York: Mc Graw-Hill.Google Scholar
Wilkins, R. W. T., and Ito, J. 1967. Infrared spectra of some synthetic talcs. Amer. Miner. 52: 16491661.Google Scholar
Wolff, A., 1967. Contribution à l'étude des mécanismes de formation des argiles: Réaction de la silice en solution avec les cations Al3+, In3+, Ni2+ et Cu2+. Thesis, Strasbourg, France, 85 p.Google Scholar