Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T00:19:31.608Z Has data issue: false hasContentIssue false

Hydrothermal Stability of Layered Silicates in Neutral and Acidic Media: Effect on Engineered-Barrier Safety

Published online by Cambridge University Press:  01 January 2024

María D. Alba*
Affiliation:
Departamento de Química Inorgánica, Instituto Ciencia de los Materiales de Sevilla, CSIC-Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092-Sevilla, Spain
Miguel A. Castro
Affiliation:
Departamento de Química Inorgánica, Instituto Ciencia de los Materiales de Sevilla, CSIC-Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092-Sevilla, Spain
Pablo Chain
Affiliation:
Departamento de Química Inorgánica, Instituto Ciencia de los Materiales de Sevilla, CSIC-Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092-Sevilla, Spain
M. Mar Orta
Affiliation:
Departamento de Química Inorgánica, Instituto Ciencia de los Materiales de Sevilla, CSIC-Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092-Sevilla, Spain
M. Carolina Pazos
Affiliation:
Laboratorio de Catálisis Heterogénea, Departamento de Química, Universidad Nacional de Colombia, A.A. 14490, Bogotá, D.C., Colombia
Esperanza Pavón
Affiliation:
Departamento de Química Inorgánica, Instituto Ciencia de los Materiales de Sevilla, CSIC-Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092-Sevilla, Spain
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many environmental applications in the inorganic remediation field are based on the swelling and ion-exchange capacities of smectites, even though these can be affected by hydrothermal treatment in water and acidic media. Here a systematic study of the properties of layered silicates that could affect their hydrothermal stability at different pH is described: type of layers, octahedral occupancy, layer charge, and origin of the layer charge. The silicates studied were selected on the basis of their different characteristics associated with these properties. Kanemite (1:0 phyllosilicate), kaolinite (1:1 phyllosilicate), and pyrophyllite and talc (2:1 phyllosilicates with no-layer charge) were examined in order to determine the effect of layer structure, whereas the hydrothermal reactivity of silicates with different layer charge was analyzed by comparing the talc-hectorite-Laponite® and talc-saponite-trioctahedral vermiculite series. Samples were treated hydrothermally at 300ºC for 48 h in pure water and in a 0.01 M HNO3 solution and the final products were analyzed by X-ray diffraction, scanning electronic microscopy, and solid-state nuclear magnetic resonance spectroscopy. All layered silicates, except for kanemite, were found to remain intact after hydrothermal treatment in water and acidic media, with only minimal short-range structural changes observed. The extent of the structural changes depended on the octahedral sheet occupancy (greater extent) and the number of isomorphic substitutions (lesser extent), both of which weaken the structure.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

References

Adams, J.M., 1987 Synthetic organic chemistry using pillared, cation-exchanged and acid treated montmorillonite catalysts — A review Applied Clay Science 2 309342 10.1016/0169-1317(87)90039-1.CrossRefGoogle Scholar
Alba, M.D. and Chain, P., 2007 Persistence of lutetium disilicate Applied Geochemistry 22 192201 10.1016/j.apgeochem.2006.09.012.CrossRefGoogle Scholar
Alba, M.D. Becerro, A.I. Castro, M.A. and Perdigon, A.C., 2001 Hydrothermal reactivity of Lu-saturated smectites: Part I. A long-range order study American Mineralogist 86 115123 10.2138/am-2001-0112.CrossRefGoogle Scholar
Alba, M.D. Becerro, A.I. Castro, M.A. and Perdigon, A.C., 2001 Hydrothermal reactivity of Lu-saturated smectites: Part II. A short-range order study American Mineralogist 86 124131 10.2138/am-2001-0113.CrossRefGoogle Scholar
Alba, M.D. Becerro, A.I. Castro, M.A. Perdigon, A.C. and Trillo, J.M., 2003 Inherent acidity of aqua metal ions in solids: assay in layered aluminosilicates Journal of Physical Chemistry B 107 39964001 10.1021/jp026344o.CrossRefGoogle Scholar
Alba, M.D. Chain, P. and Pavón, E., 2006 Synthesis and characterization of gallium containing kanemite Microporous and Mesoporous Materials 94 6673 10.1016/j.micromeso.2006.03.022.CrossRefGoogle Scholar
Allen, C.C. and Wood, M.I., 1988 Bentonite in nuclear waste disposal: A review of research in support of the basalt waste isolation project Applied Clay Science 3 1130 10.1016/0169-1317(88)90003-8.CrossRefGoogle Scholar
Ames, L.L. Sand, L.B. and Goldich, S.S., 1958 A contribution on the Hector, California bentonite deposit Economic Geology 53 2237 10.2113/gsecongeo.53.1.22.CrossRefGoogle Scholar
Bauer, A. Scha¨fer, T. Dohrmann, R. Hoffmann, H. and Kim, J.I., 2001 Smectite stability in acid salt solutions and the fate of Eu, Th, and U in solution Clay Minerals 36 93103 10.1180/000985501547376.CrossRefGoogle Scholar
Bentabol, M. Cruz, M.D.R. Huerta, F.J. and Linares, J., 2003 Hydrothermal transformation of kaolinite at 200 and 300 degrees C Clay Minerals 38 161172 10.1180/0009855033820086.CrossRefGoogle Scholar
Bergaya, F. Theng, B.K.G. and Lagaly, G e, 2006 Handbook of Clay Science New York Elsevier.Google Scholar
Blasco, T. Corma, A. Navarro, M.T. and Pariente, J.P., 1995 Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures Journal of Catalysis 156 574 10.1006/jcat.1995.1232.CrossRefGoogle Scholar
Breen, C., 1988 The acidity of trivalent cation-exchanged montmorillonite. II. Desorption of mono- and di-substituted pyridines Clay Minerals 23 323328 10.1180/claymin.1988.023.3.09.CrossRefGoogle Scholar
Breen, C., 1991 Thermogravimetric study of the desorption of cyclohexylamine and pyridine from an acid treated Wyoming bentonite Clay Minerals 26 473486 10.1180/claymin.1991.026.4.03.CrossRefGoogle Scholar
Breen, C., 1991 Thermogravimetric and infrared study of the desorption of butylamine, cyclohexylamine and pyridine from Ni- and Co-exchanged montmorillonite Clay Minerals 26 487496 10.1180/claymin.1991.026.4.04.CrossRefGoogle Scholar
Breen, C. Deane, A.T. and Flynn, J.J., 1987 The acidity of trivalent cation-exchanged montmorillonite. Temperature-programmed desorption and infrared studies of pyridine and n-butylamine Clay Minerals 22 169178 10.1180/claymin.1987.022.2.05.CrossRefGoogle Scholar
Cetisli, H. and Gedikbey, T., 1990 Dissolution kinetics of sepiolite from Eskisehir (Turkey) in hydrochloric and nitric acids Clay Minerals 25 207215 10.1180/claymin.1990.025.2.06.CrossRefGoogle Scholar
Cicel, B. and Novak, I., 1977 Dissolution of smectites in HCI: I. Half-time of dissolution as a measure of reaction rate Proceedings of the 7th Conference on Clay Mineralogy and Petrology, Karlovy Vary, Czech Republic 163171.Google Scholar
Cicel, B. Novak, I. and Pivovarnícˇek, F., 1965 Dissolution of montmorillonites in HCI and its possible application in the study of their activation Silikcity 9 130139.Google Scholar
Corma, A. Mifsud, A. and Sanz, E., 1987 Influence of the chemical composition and textural characteristic of paly-gorskite on the acid leaching of octahedral cations Clay Minerals 22 225232 10.1180/claymin.1987.022.2.10.CrossRefGoogle Scholar
Corma, A. Mifsud, A. and Sanz, E., 1990 Kinetics of the acid leaching of palygorskite: Influence of the octahedral sheet composition Clay Minerals 25 197205 10.1180/claymin.1990.025.2.05.CrossRefGoogle Scholar
Cuadros, J., 2008 Clays as sealing material in nuclear waste repositories Geology Today 24 90103 10.1111/j.1365-2451.2008.00667.x.CrossRefGoogle Scholar
Engelhardt, G. and Michel, D e, 1987 High-resolution Solid-State NMR of Silicates and Zeolites New York John Wiley & Sons.Google Scholar
Fahn, R., 1973 Influence of the structure and morphology of bleaching earths on their bleaching action on oils and fats Fette, Seifen, Anstrichmit 75 7782 10.1002/lipi.19730750202.CrossRefGoogle Scholar
Fahn, R. and Fenderl, K., 1983 Reaction products of organic dye molecules with acid treated montmorillonite Clay Minerals 18 447458 10.1180/claymin.1983.018.4.10.CrossRefGoogle Scholar
García, M. Gancedo, J.I. Marco, J.F. Franco, M.J. Mendioroz, S. and Pajares, J.A., 1989 Mössbauer study of iron removal in a montmorillonite Hyperfine Interactions 46 629634 10.1007/BF02398252.CrossRefGoogle Scholar
Glasser, F.P., 2001 Mineralogical aspects of cement in radioactive waste disposal Mineralogical Magazine 65 621633 10.1180/002646101317018442.CrossRefGoogle Scholar
Gregor, M. Cicel, B., 1969 Bleaching earth Bentonite and its Application Bratislava, Czech Republic Publishing House SAS 218254.Google Scholar
Grim, R.E., 1968 Clay Mineralogy 2nd New York McGraw Hill.Google Scholar
Grim, R.E. and Gu¨ven, N., 1978 Bentonites — Geology, Mineralogy, Properties and Uses New York Elsevier.Google Scholar
Gu¨ler, C. and Sarier, N., 1990 Kinetics of the thermal dehydration of acid-activated montmorillonite by the rising temperature technique Thermochimica Acta 159 2933 10.1016/0040-6031(90)80090-L.CrossRefGoogle Scholar
Jennings, S. and Thompson, G.R., 1986 Diagenesis of Plio-Pleistocene sediments of the Colorado River Delta, southern California Journal of Sedimentary Petrology 56 8998.Google Scholar
Johan, Z. and Maglione, G.F., 1972 Kanemite a new hydrated sodium silicate Bulletin de la Societé Française Mineralogie et de Cristallographie 95 371382.CrossRefGoogle Scholar
Jovanovic, N. and Janackovic, J., 1991 Pore structure and adsorption properties of an acid activated bentonite Applied Clay Science 6 5968 10.1016/0169-1317(91)90010-7.CrossRefGoogle Scholar
Jozefaciuk, G. and Bowanko, G., 2002 Effect of acid and alkali treatments on surface areas and adsorption energies of selected minerals Clays and Clay Minerals 50 771783 10.1346/000986002762090308.CrossRefGoogle Scholar
Laporte Industries Ltd., 1990 Laponite Technological Bulletin .Google Scholar
Levitz, P. Lecolier, E. Mourchid, A. Delville, A. and Lyonnard, S., 2000 Liquid-solid transition of laponite suspension at very low ionic strength: Long-range electrostatic stabilization of anisotropic colloids Europhysics Letters 49 672677 10.1209/epl/i2000-00203-9.CrossRefGoogle Scholar
Luce, R.W. and Parks, G.A., 1972 Dissolution kinetics of magnesium silicates Geochimica et Cosmochimica Acta 36 3550 10.1016/0016-7037(72)90119-6.CrossRefGoogle Scholar
Mantovani, M. Escudero, A. Alba, M.D. and Becerro, A.I., 2009 Stability of phyllosilicates in Ca(OH)2 solution: Influence of layer nature, octahedral occupation, presence of tetrahedral Al and degree of crystallinity Applied Geochemistry 24 12511260 10.1016/j.apgeochem.2009.03.012.CrossRefGoogle Scholar
Massiot, D. Fayon, F. Capron, M. King, I. Le Calvé, S. Alonso, B. Durand, J.O. Bujoli, B. Gan, Z. and Hoatson, G., 2002 Modelling one- and two-dimensional solid-state NMR spectra Magnetic Resonance in Chemistry 40 7076 10.1002/mrc.984.CrossRefGoogle Scholar
Mather, J.D. Chapman, N.A. Black, J.H. and Lintern, B.C., 1982 The geological disposal of high-level radioactive waste — a review of the Institute of Geological Sciences Research programme Nuclear Energy 21 167173.Google Scholar
Morgan, D.A. Shaw, D.B. Sidebottom, M.J. Soon, T.C. and Taylor, R.S., 1985 The function of bleaching earths in the processing of palm, palm kernel and coconut oil Journal of the American Oil Chemical Society 62 292299 10.1007/BF02541394.CrossRefGoogle Scholar
Murray, H.H., 1991 Overview — Clay Mineral Applications Applied Clay Science 29 379395 10.1016/0169-1317(91)90014-Z.CrossRefGoogle Scholar
Murray, H.H., 1999 Applied clay mineralogy today and tomorrow Clay Minerals 34 3949 10.1180/000985599546055.CrossRefGoogle Scholar
Murray, H.H., 2000 Traditional and new applications for kaolin, smectite, and palygorskite: a general overview Applied Clay Science 17 207221 10.1016/S0169-1317(00)00016-8.CrossRefGoogle Scholar
Nagy, K.L., White, F.W. Brantley, S.L., 1995 Dissolution and precipitation kinetics of sheet silicates Chemical Weathering Rates of Silicate Weathering Washington, D.C Mineralogical Society of America 173225 10.1515/9781501509650-007.CrossRefGoogle Scholar
Novak, I. and Cicel, B., 1978 Dissolution of smectites in HCl: II. Dissolution rate as a function of crystallochemical composition Clays and Clay Minerals 26 341344 10.1346/CCMN.1978.0260504.CrossRefGoogle Scholar
Petit, S. Martin, F. Wiewióra, A. De Parseval, P. and Decarreau, A., 2004 Crystal-chemistry of talc: A near infrared (NIR) spectroscopy study American Mineralogist 89 319326 10.2138/am-2004-2-310.CrossRefGoogle Scholar
Prost, J.L., 1984 Saponite from near Ballarat, California Clays and Clay Minerals 32 147153 10.1346/CCMN.1984.0320209.CrossRefGoogle Scholar
Pusch, R. and Yong, R., 2003 Water saturation and retention of hydrophilic clay buffer-microstructural aspects Applied Clay Science 23 6168 10.1016/S0169-1317(03)00087-5.CrossRefGoogle Scholar
Pusch, R. Zwahr, H. Gerber, R. and Schomburg, J., 2003 Interaction of cement and smectite clay — theory and practice Applied Clay Science 23 203210 10.1016/S0169-1317(03)00104-2.CrossRefGoogle Scholar
Pusch, R. Kasbohm, J. Pakovsky, J. and Cechova, Z., 2007 Are all smectite clays suitable as “buffers” Physics and Chemistry of the Earth 32 116122 10.1016/j.pce.2006.03.008.CrossRefGoogle Scholar
Ramírez, S. Cuevas, J. Vigil, R. and Leguey, S., 2002 Hydrothermal alteration of “La Serrata” bentonite (Almería, Spain) by alkaline solutions Applied Clay Science 21 257269 10.1016/S0169-1317(02)00087-X.CrossRefGoogle Scholar
Read, D. Glasser, F.P. Ayora, C. Guardiola, M.T. and Sneyers, A., 2001 Mineralogical and microstructural changes accompanying the interaction of boom clay with ordinary Portland cement Advanced Cement Research 13 175183 10.1680/adcr.2001.13.4.175.CrossRefGoogle Scholar
Sánchez-Soto, P.J. Justo, A. and Pérez-Rodríguez, J.L., 1994 Grinding effect on kaolinite-pyrophyllite-illite natural mixtures and its influence on mullite formation Journal of Materials Science 29 12761283 10.1007/BF00975075.CrossRefGoogle Scholar
Sanz, J. and Serratosa, J.M., 1984 Si-29 and Al-27 High-Resolution MAS-NMR spectra of phyllosilicates Journal of the American Chemical Society 106 47904793 10.1021/ja00329a024.CrossRefGoogle Scholar
Savage, D. and Chapman, N.A., 1982 Hydrothermal behaviour of simulated waste glass- and waste-rock interaction under repository conditions Chemical Geology 36 5986 10.1016/0009-2541(82)90039-0.CrossRefGoogle Scholar
Savage, D. Noy, D. and Mihara, M., 2002 Modelling the interaction of bentonite with hyperalkaline fluids Applied Geochemistry 17 207223 10.1016/S0883-2927(01)00078-6.CrossRefGoogle Scholar
Siddiqui, M.K.H., 1968 Bleaching Earths Oxford, UK Pergamon Press 10.1016/B978-0-08-012738-5.50006-1.CrossRefGoogle Scholar
Stein, D.J. and Spera, F.J., 1993 Experimental rheometry of melts and supercooled liquids in the system NaAlSiO4-SiO2-Implications for structure and dynamics American Mineralogist 78 710723.Google Scholar
Weiss, C.A. Altaner, S.P. and Kirkpatrick, R.J., 1987 High-resolution Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shift, structural distortions, and chemical variations American Mineralogist 72 935942.Google Scholar
Wheeler, P.A. Wang, J. Baker, J. and Mathias, L.J., 2005 Synthesis and characterization of covalently functionalized Laponite clay Chemistry and Materials 17 30123018 10.1021/cm050306a.CrossRefGoogle Scholar
White, G.N. Dixon, J.B. Weaver, R.M. and Kunkle, A.C., 1992 Sedimentary structure in gray kaolins of Georgia Clays and Clay Minerals 40 555560 10.1346/CCMN.1992.0400509.CrossRefGoogle Scholar
Williams-Daryn, S. Thomas, R.K. Castro, M.A. and Becerro, A., 2002 The structures of complexes of a vermiculite intercalated by cationic surfactants, a mixture of cationic surfactants, and a mixture of cationic and non-ionic surfactants Journal of Colloid and Interface Science 256 314324 10.1006/jcis.2002.8685.CrossRefGoogle Scholar