Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T05:11:48.954Z Has data issue: false hasContentIssue false

Glycerol-Intercalated Mg-Al Hydrotalcite as a Potential Solid Base Catalyst for Transesterification

Published online by Cambridge University Press:  01 January 2024

Yuanzhou Xi
Affiliation:
Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, PO Box 400741, Charlottesville, VA 22904-4741, USA
Robert J. Davis*
Affiliation:
Department of Chemical Engineering, University of Virginia, 102 Engineers’ Way, PO Box 400741, Charlottesville, VA 22904-4741, USA
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Glycerol is a byproduct of biodiesel synthesis by transesterification of triglycerides with short-chain alcohols in the presence of solid base catalysts. Because hydrotalcite is a potentially useful basic catalyst for the transesterification reaction, the interaction of glycerol with hydrotalcite is the focus of this work. Glycerol was intercalated into Mg-Al hydrotalcite with a Mg/Al molar ratio of 4 under elevated temperatures of 4432/503 K in the absence and presence of NaOH. The resulting materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and N2 adsorption. The amount of glycerol incorporated into hydrotalcite increased with increasing temperature of intercalation. However, the brucite-like sheets of hydrotalcite partially decomposed during the intercalation process at the highest temperature. The presence of NaOH stabilized the hydrotalcite layers against decomposition under high temperature (503 K). The intercalated materials exposed large surface areas ranging from 142 to 663 m2 g−1, depending on the preparation conditions. The glycerol-intercalated hydrotalcites were less catalytically active than hydrotalcite with OH counterions for the transesterification of tributyrin with methanol. The lower reactivity of glycerol-intercalated hydrotalcite was probably the result of a strong interaction between the intercalated glycerolate (HOCH2-CHOH-CH2O) and the partially decomposed brucite-like sheets.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2010

References

Bellotto, M. Rebours, B. Clause, O. and Lynch, J., 1996 Hydrotalcite decomposition mechanism: A clue to the structure and reactivity of spinel-like mixed oxides Journal of Physical Chemistry 100 85358542 10.1021/jp960040i.CrossRefGoogle Scholar
Beres, A. Palinko, I. Kiricsi, I. Nagy, J.B. Kiyozumi, Y. and Mizukami, F., 1999 Layered double hydroxides and their pillared derivatives — materials for solid base catalysis; synthesis and characterization Applied Catalysis a — General 182 237247 10.1016/S0926-860X(99)00009-5.CrossRefGoogle Scholar
Cantrell, D.G. Gillie, L.J. Lee, A.F. and Wilson, K., 2005 Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis Applied Catalysis a — General 287 183190 10.1016/j.apcata.2005.03.027.CrossRefGoogle Scholar
Cavani, F. Trifiro, F. and Vaccari, A., 1991 Hydrotalcite-type anionic clays: preparation, properties and applications Catalysis Today 11 173301 10.1016/0920-5861(91)80068-K.CrossRefGoogle Scholar
Choudary, B.M. Kantam, M.L. Reddy, C.R.V. Rao, K.K. and Figueras, F., 1999 The first example of Michael addition catalysed by modified Mg-Al hydrotalcite Journal of Molecular Catalysis a-Chemical 146 279284 10.1016/S1381-1169(99)00099-0.CrossRefGoogle Scholar
Choudary, B.M. Kantam, M.L. Reddy, C.V. Aranganathan, S. Santhi, P.L. and Figueras, F., 2000 Mg-Al-O-t-Bu hydrotalcite: a new and efficient heterogeneous catalyst for transesterification Journal of Molecular Catalysis a-Chemical 159 411416 10.1016/S1381-1169(00)00209-0.CrossRefGoogle Scholar
Choudary, B.M. Kantam, M.L. Reddy, C.R.V. Bharathi, B. and Figueras, F., 2003 Wadsworth-Emmons reaction: the unique catalytic reaction by a solid base Journal of Catalysis 218 191200 10.1016/S0021-9517(03)00080-0.CrossRefGoogle Scholar
Dashnau, J.L. Nucci, N.V. Sharp, N.K.A. and Vanderkooi, J.M., 2006 Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures Journal of Physical Chemistry B 110 1367013677 10.1021/jp0618680.CrossRefGoogle ScholarPubMed
de Boer, J.H. Linsen, B.G. and Osinga, T.J., 1965 Pore systems in catalysts. VI. The universal t curve Journal of Catalysis 4 643648 10.1016/0021-9517(65)90263-0.CrossRefGoogle Scholar
Debecker, D.P. Gaigneaux, E.M. and Busca, G., 2009 Exploring, tuning, and exploiting the basicity of hydro-talcites for applications in heterogeneous catalysis Chemistry — A European Journal 15 39203935 10.1002/chem.200900060.CrossRefGoogle ScholarPubMed
Di Cosimo, J.I. Diez, V.K. Xu, M. Iglesia, E. and Apesteguia, C.R., 1998 Structure and surface and catalytic properties of Mg-Al basic oxides Journal of Catalysis 178 499510 10.1006/jcat.1998.2161.CrossRefGoogle Scholar
Fishel, C.T. and Davis, R.J., 1994 Characterization of Mg-Al mixed oxides by temperature-programmed reaction of 2-propanol Langmuir 10 159165 10.1021/la00013a024.CrossRefGoogle Scholar
Fishel, C.T. and Davis, R.J., 1994 Use of catalytic reactions to probe Mg-Al mixed-oxide surfaces Catalysis Letters 25 8795 10.1007/BF00815418.CrossRefGoogle Scholar
Gardner, E. Huntoon, K.M. and Pinnavaia, T.J., 2001 Direct synthesis of alkoxide-intercalated derivatives of hydrotal-cite-like layered double hydroxides: Precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films Advanced Materials 13 12631266 10.1002/1521-4095(200108)13:16<1263::AID-ADMA1263>3.0.CO;2-R.3.0.CO;2-R>CrossRefGoogle Scholar
Gordiyenko, O.I. Linnik, T.P. and Gordiyenko, E.O., 2004 Erythrocyte membrane permeability for a series of diols Bioelectrochemistry 62 115118 10.1016/j.bioelechem.2003.08.003.CrossRefGoogle ScholarPubMed
Greenwell, H.C. Stackhouse, S. Coveney, P.V. and Jones, W., 2003 A density functional theory study of catalytic transesterification by tert-butoxide MgAl anionic clays Journal of Physical Chemistry B 107 34763485 10.1021/jp027663i.CrossRefGoogle Scholar
Guimaraes, J.L. Marangoni, R. Ramos, L.P. and Wypych, F., 2000 Covalent grafting of ethylene glycol into the Zn-Al-CO3 layered double hydroxide Journal of Colloid and Interface Science 227 445451 10.1006/jcis.2000.6873.CrossRefGoogle ScholarPubMed
Hansen, H.C.B. and Taylor, R.M., 1991 The use of glycerol intercalates in the exchange of CO32− with SO42−, NO3 or Cl in pyroaurite-type compounds Clay Minerals 26 311327 10.1180/claymin.1991.026.3.02.CrossRefGoogle Scholar
Kloprogge, J.T. and Frost, R.L., 1999 Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites Journal of Solid State Chemistry 146 506515 10.1006/jssc.1999.8413.CrossRefGoogle Scholar
McKenzie, A.L. Fishel, C.T. and Davis, R.J., 1992 Investigation of the surface-structure and basic properties of calcined hydrotalcites Journal of Catalysis 138 547561 10.1016/0021-9517(92)90306-3.CrossRefGoogle Scholar
Mendelovici, E. Frost, R.L. and Kloprogge, T., 2000 Cryogenic Raman spectroscopy of glycerol Journal of Raman Spectroscopy 31 11211126 10.1002/1097-4555(200012)31:12<1121::AID-JRS654>3.0.CO;2-G.3.0.CO;2-G>CrossRefGoogle Scholar
Meyn, M B K and Lagaly, G., 1990 Anion-exchange reactions of layered double hydroxides Inorganic Chemistry 29 52015207 10.1021/ic00351a013.CrossRefGoogle Scholar
Perez-Ramirez, J. Abello, S. and van der Pers, N.M., 2007 Memory effect of activated Mg-Al hydrotalcite: in situ XRD studies during decomposition and gas-phase reconstruction Chemistry — A European Journal 13 870878 10.1002/chem.200600767.CrossRefGoogle ScholarPubMed
Rao, K.K. Gravelle, M. Valente, J.S. and Figueras, F., 1998 Activation of Mg-Al hydrotalcite catalysts for aldol condensation reactions Journal of Catalysis 173 115121 10.1006/jcat.1997.1878.CrossRefGoogle Scholar
Reichle, W.T., 1985 Catalytic reactions by thermally activated, synthetic, anionic clay-minerals Journal of Catalysis 94 547557 10.1016/0021-9517(85)90219-2.CrossRefGoogle Scholar
Remias, R. Kukovecz, A. Daranyi, M. Kozma, G. Varga, S. Konya, Z. and Kiricsi, I., 2009 Synthesis of zinc glycerolate microstacks from a ZnO nanorod sacrificial template European Journal of Inorganic Chemistry 36223627.CrossRefGoogle Scholar
Rey, F. and Fornes, V., 1992 Thermal decomposition of hydrotalcites — an infrared and nuclear magnetic resonance spectroscopic study Journal of the Chemical Society — Faraday Transactions 88 22332238 10.1039/FT9928802233.CrossRefGoogle Scholar
Sels, B.F. De Vos, D.E. and Jacobs, P.A., 2001 Hydrotalcite-like anionic clays in catalytic organic reactions Catalysis Reviews — Science and Engineering 43 443488 10.1081/CR-120001809.CrossRefGoogle Scholar
Stanimirova, T. and Hibino, T., 2006 Ethylene glycol intercalation in MgAlCO3 hydrotalcite and its low-temperature intermediate phases Applied Clay Science 31 6575 10.1016/j.clay.2005.08.003.CrossRefGoogle Scholar
Tichit, D. Lhouty, M.H. Guida, A. Chiche, B.H. Figueras, F. Auroux, A. Bartalini, D. and Garrone, E., 1995 Textual properties and catalytic activity of hydrotalcites Journal of Catalysis 151 5059 10.1006/jcat.1995.1007.CrossRefGoogle Scholar
Tichit, D. Bennani, M.N. Figueras, F. and Ruiz, J.R., 1998 Decomposition processes and characterization of the surface basicity of Cl and CO3 hydrotalcites Langmuir 14 20862091 10.1021/la970543v.CrossRefGoogle Scholar
Tichit, D. Bennani, M.N. Figueras, F. Tessier, R. and Kervennal, J., 1998 Aldol condensation of acetone over layered double hydroxides of the meixnerite type Applied Clay Science 13 401415 10.1016/S0169-1317(98)00035-0.CrossRefGoogle Scholar
van Bokhoven, J.A. Roelofs, J.C.A.A. de Jong, K.P. and Koningsberger, D.C., 2001 Unique structural properties of the Mg-Al hydrotalcite solid base catalyst: An in situ study using Mg and Al K-edge XAFS during calcination and rehydration Chemistry — A European Journal 7 12581265 10.1002/1521-3765(20010316)7:6<1258::AID-CHEM1258>3.0.CO;2-I.3.0.CO;2-I>CrossRefGoogle Scholar
Williams, G.R. and O’Hare, D., 2006 Towards understanding, control and application of layered double hydroxide chemistry Journal of Materials Chemistry 16 30653074 10.1039/b604895a.CrossRefGoogle Scholar
Winter, F. Xia, X.Y. Hereijers, B.P.C. Bitter, J.H. van Dillen, A.J. Muhler, M. and de Jong, K.P., 2006 On the nature and accessibility of the Bronsted-base sites in activated hydrotalcite catalysts Journal of Physical Chemistry B 110 92119218 10.1021/jp0570871.CrossRefGoogle ScholarPubMed
Wypych, F. Schreiner, W.H. and Marangoni, R., 2002 Covalent grafting of ethylene glycol and glycerol into brucite Journal of Colloid and Interface Science 253 180184 10.1006/jcis.2002.8489.CrossRefGoogle ScholarPubMed
Xi, Y. and Davis, R.J., 2008 Influence of water on the activity and stability of activated Mg-Al hydrotalcites for the transesterification of tributyrin with methanol Journal of Catalysis 254 190197 10.1016/j.jcat.2007.12.008.CrossRefGoogle Scholar
Xi, Y. and Davis, R.J., 2009 Influence of textural properties and trace water on the reactivity and deactivation of reconstructed layered hydroxide catalysts for transesterification of tributyrin with methanol Journal of Catalysis 268 307317 10.1016/j.jcat.2009.09.029.CrossRefGoogle Scholar
Xi, Y. and Davis, R.J., 2010 Intercalation of ethylene glycol into yttrium hydroxide layered materials Inorganic Chemistry 49 38883895 10.1021/ic1000478.CrossRefGoogle ScholarPubMed
Yang, W.S. Kim, Y. Liu, P.K.T. Sahimi, M. and Tsotsis, T.T., 2002 A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide Chemical Engineering Science 57 29452953 10.1016/S0009-2509(02)00185-9.CrossRefGoogle Scholar
Zelent, B. Nucci, N.V. and Vanderkooi, J.M., 2004 Liquid and ice water and glycerol/water glasses compared by infrared spectroscopy from 295 to 12 K Journal of Physical Chemistry A 108 1114111150 10.1021/jp0475584.CrossRefGoogle Scholar