Published online by Cambridge University Press: 28 February 2024
The occurrences of sepiolite beds and nodules in alkaline and saline Miocene Eskisehir lake deposits provide unique examples of ancient lacustrine environments. Stockwork-type magnesite deposits, which were formed very close to the Miocene lake, served as parent rocks for sepiolite nodules (meerschaum). The Miocene succession consists of calcareous clay, clayey carbonate, dolomite, a gypsum-bearing calcareous clay series, siliceous tuffs, sepiolite beds, sepiolite-bearing dolomite, and basal conglomerates of ultramafic rocks. Sepiolite beds were deposited by direct precipitation from Si-supersaturated lake water under alkaline and saline conditions. They are underlain by a gypsum series. Organic matter-rich sepiolites suggest the presence of water stratification with anoxic bottom waters, which developed due to high sulphate input at the base from the ascending hydrothermal solutions along the fracture systems with extensive fresh water input near to the surface. Sepiolite nodules resulted from diagenetic replacement of magnesite pebbles at shallow burial under alkaline conditions in the vicinity of paleo-shorelines. Sepiolite beds were deposited in three ways: 1) black (up to 2.8 wt. % TOC) sepiolite beds rich in organic matter accumulated in an anaerobic paleoenvironment; 2) brown (about 0.5 wt. % TOC) sepiolite beds poor in organic matter, containing minor amounts of white, 2–6 mm long, discontinuous, and very soft dolomite laminae formed in a dysaerobic paleoenvironment; and 3) white dolomitic sepiolite beds in which dolomite content is about 20–40% in an aerobic paleoenvironment.
Cyclic dolomite and gypsum series indicate hypersaline-evaporative paleoenvironments with rapid changes in lake water chemistry. These cyclic evaporatic conditions are also related to cyclic changes in water depth. Based on X-ray powder diffraction data, except degree of crystallinity, no mineralogic difference was found between sepiolite in beds and nodules. SEM studies revealed fibers about 0.2 µm wide and up to 30 µm long in sepiolite beds; crystals less than 5 µm long with bent tips; and a more compacted appearance in sepiolite nodules.