Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T19:14:53.281Z Has data issue: false hasContentIssue false

Genesis, Mineralogy and Geochemistry of Kaolin Deposits of the Jari River, Amapá State, Brazil

Published online by Cambridge University Press:  01 January 2024

Célia R. Montes
Affiliation:
Departamento de Solos e Nutrição de Plantas, ESALQ/Núcleo de Pesquisa em Geoquímica e Geofísica da Litosfera (NUPEGEL), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, C.P. 09, 13418-900, Piracicaba, SP, Brazil
Adolpho J. Melfi
Affiliation:
Departamento de Solos e Nutrição de Plantas, ESALQ/Núcleo de Pesquisa em Geoquímica e Geofísica da Litosfera (NUPEGEL), Universidade de São Paulo (USP), Avenida Pádua Dias, 11, C.P. 09, 13418-900, Piracicaba, SP, Brazil
Adilson Carvalho*
Affiliation:
Departamento de Geologia Sedimentar, Ambiental do Instituto de Geociências/NUPEGEL, USP, Rua do Lago, 562, 05508-900, São Paulo, SP, Brazil
Antonio C. Vieira-Coelho
Affiliation:
Departamento de Química Industrial/LMPSol, Escola Politécnica, USP, Avenida Lineu Prestes, 580, 05508-900, São Paulo, SP, Brazil
Milton L. L. Formoso
Affiliation:
Centro de Estudo em Petrologia e Geoquímica, Instituto de Geociências da Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9.500, 94501-970, Porto Alegre, RS, Brazil
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kaolin samples from the Jari deposit (Amazon region) were studied using various techniques to characterize its structural and crystallochemical aspects, and to establish its origin and evolution. A profile 60 m thick was selected in a kaolin mine (Morro do Felipe) located at the banks of the Jari river. Despite the great thickness of the deposit and the variety of kaolin types, the mineralogical composition is rather homogeneous and is mainly kaolinite associated with gibbsite and small amounts of quartz, anatase, goethite and hematite. The field observations and the morphological analysis indicate the existence of sedimentary features throughout the whole profile except for the upper aluminous clayey layer (Belterra Clay). This is evidence that the Rio Jari kaolin deposit originated from sedimentary material, the Alter do Chão Formation. The presence of alternating clay and sandy layers is explained by sedimentation processes with great depositional energy variation. Thus, the accumulation of thick clay layers was related to a low-energy phase, and during the high-energy phases, the deposition process led to the accumulation of sandy materials, constituted essentially of quartz and showing strong textural and structural variation. Later on, periods of hydromorphy were responsible for iron removal and consequently for the bleaching of the sedimentary formation. The crystallinity data show an increase of the structural disorder toward the surface associated with an increase in the amount of structural Fe in the kaolinite. The Rio Jari kaolin deposits should be considered as having originated from kaolinitic clay sediments of the Alter do Chão formation (protore) that was submitted to intensive lateritic weathering processes.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Balan, E., (1995) Cristallochimie du Fer dans les Kaolinites. DEA de Géochimie Fondamentale et Appliquée Paris, France Université Paris VII et IPGP 29 pp.Google Scholar
Calas, G., (1986) Méthodes Spectroscopiques Appliquées aux Minéraux Paris Société Française de Minéralogie et Cristallographie 426 pp.Google Scholar
Caputo, M.V., (1984) Stratigraphy, tectonics, paleoclimatology and paleogeography of northern basins of Brazil Santa Barbara University of California 583 pp.Google Scholar
Cases, J.M. Liètard, O. Yvon, J. and Delon, J.F., (1982) Étude des propriétés cristallochimiques, morphologiques, superficielles des kaolinites désordonnées Bulletin Minéralogique 105 439 455.CrossRefGoogle Scholar
Costa, J.B.S. Hassui, Y., Costa, M.L. and Angélica, R.S., (1997) Evolução Geológica da Amazônia Contribuições à Geologia da Amazônia Brazil FINEP/SBG Núcleo Norte 16 90.Google Scholar
Coura, F. Moeri, E.N. and Kern, R.S., (1986) Geologia do Caolim do Jari Anais do XXXIV Congresso Brasileiro de Geologia, Goiânia 5 2248 2258.Google Scholar
Daemon, R.F., (1975) Contribuição à datação da Formaéão Alter do Chão, Bacia do Amazonas Revista Brasileira de Geociências 5 78 84.Google Scholar
Delineau, T., (1994) Les argiles kaoliniques du Bassin des Charentes (France): analyses typologique, cristallo-chimique, spéciation du fer et applications France Institut National Polytechnique de Lorraine/École Nationale Supérièure de Géologie de Nancy.Google Scholar
DNPM, Sumário Mineral 2001 (2001) Brasília, Brasil Departamento Nacional de produção Mineral.Google Scholar
Duarte, A.L.S. (1995) Caolim do Morro do Felipe, baixo Rio Jari, Estado do Amapá. Contexto Geológico e Gênese. Dissertação de Mestrado, Universidade Federal do Pará, 132 pp.Google Scholar
Duarte, A.L.S. and Kotschoubey, B. (1994) Cobertura caolinítica da região do baixo Rio Jari. Proposta de evolução. Simpósio de Geologia da Amazônia, SBG, 4, Belém. Boletím de Resumos Expandidos, 7982.Google Scholar
Gaite, J. Ermakoff, P. and Muller, J.-P., (1993) Characterization and origin of two Fe3+ EPR spectra in kaolinite Physics and Chemistry of Minerals 20 242247 10.1007/BF00208137.CrossRefGoogle Scholar
Galán, E. Aparicio, P. Gonzáles, I. and La Iglesia, A., (1994) Influence of associated components of kaolin on the degree of disorder of kaolinite as determinated by XRD Geologica Carpathica — Series Clays 45 59 75.Google Scholar
Hinckley, D.N., (1963) Variability in ‘cristallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina Clays and Clay Minerals 13 229 235.Google Scholar
Klammer, G., (1971) Über plio-pleistozäne terrassen und ihre sedimente im unteren Amazonasgebiet Zeitschrift für Geomorphologie 15 62 106.CrossRefGoogle Scholar
Klammer, G., (1978) Reliefentwicklung In Amazonas becken Und Plio-Pleistozaene Bewegungen Des Meeressspiegels Zeitschrift für Geomorphologie 22 390 416.Google Scholar
Lucas, Y. Luizão, F.J. Chauvel, A. Rouiller, J. and Nahon, D., (1993) The relation between biological activity of the rain forest and mineral composition of soils Science 260 521523 10.1126/science.260.5107.521.CrossRefGoogle ScholarPubMed
Meads, R.E. and Malden, P.J., (1975) Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions Clay Minerals 10 313345 10.1180/claymin.1975.010.5.01.CrossRefGoogle Scholar
Millot, G. and Fauck, R., (1971) Sur l’origine de la silice de silicifications climatiques et des diatomites quaternaires du Sahara Comptes Rendu de l’Academie des Sciences, Paris, France 272 4 7.Google Scholar
Montes-Lauar, C.R., Balan, E., Fritsch, E., Melfi, A.J., Boulet, R., Magat, Ph. and Carvalho, A. (1997) Stratigraphy and mineralogy of red-purple continental sediments (Alter do Chao Formation of Manaus, Brazil). 11th International Clay Conference, Ottawa, Canada. Abstract A-52.Google Scholar
Muller, J.-P. Calas, G., Murray, H.H. Bundy, W. and Harvey, C., (1993) Genetic significance of paramagnetic centers in kaolinites Kaolin Genesis and Utilization Boulder, Colorado The Clay Minerals Society 261 289.Google Scholar
Muller, Jean-Pierre Clozel, Blandine Ildefonse, Philippe and Calas, Georges, (1992) Radiation-induced defects in kaolinites: indirect assessment of radionuclide migration in the geosphere Applied Geochemistry 7 205216 10.1016/S0883-2927(09)80077-2.CrossRefGoogle Scholar
Murray, H.H., (1986) Clays Ullmann’s Encyclopedia of Industrial Chemistry Weinheim, Germany VCH Verlagsgesellschaft 109136 Vol. A7.Google Scholar
Murray, H.H. Partridge, P., Van Olphen, H. and Veniali, F., (1982) Genesis of Rio Jari kaolin Proceedings of the 7th International Clay Conference, Bologna-Pavia Amsterdam Elsevier 279291 Developments in Sedimentology, 35. .Google Scholar
Pandolfo, C., (1979) Bauxita, caulins e argilas na Amazonia Cerâmica 25 1 15.Google Scholar
Plançon, A. and Zacharie, C., (1990) An expert system for the structural characterization of kaolinites Clay Minerals 25 249260 10.1180/claymin.1990.025.3.01.CrossRefGoogle Scholar
Plançon, A. Giese, R.F. Jr. and Snyder, R.N., (1988) The Hinckley index for kaolinites Clay Minerals 23 249260 10.1180/claymin.1988.023.3.02.CrossRefGoogle Scholar
Putzer, H. and Sioli, H., (1984) The geological evolution of the Amazon Basin and its mineral resources The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin Dordrecht, The Netherlands Junk Publishers 1546 10.1007/978-94-009-6542-3_2 .Monographiae Biologicae, 56 .CrossRefGoogle Scholar
Silva, S.P. and Duarte, A.L.S. (1983) Depósitos de caolim do Morro do Filipe, Município de Mazagão — Amapã. Relatório no 1734, DNPM, 12 pp.Google Scholar
Suszczynski, E.F., (1975) Os recursos minerais e potenciais do Brasil e sua metalogenia Rio de Janeiro Interciências 536 pp.Google Scholar