Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T09:33:59.061Z Has data issue: false hasContentIssue false

Further Investigations of a Conversion Series of Dioctahedral Mica/Smectites in the Shinzan Hydrothermal Alteration Area, Northeast Japan

Published online by Cambridge University Press:  02 April 2024

Atsuyuki Inoue
Affiliation:
Geological Institute, College of Arts and Sciences, Chiba University, Chiba 260, Japan
Minoru Utada
Affiliation:
Department of Geology, Faculty of Science, University of Tokyo, Tokyo 113, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A complete conversion series for mica/smectites was found in a hydrothermal alteration envelope around Kuroko-type ore deposits at the Shinzan area, Akita Prefecture, Northeast Japan. The minerals are an alteration product of volcanic glass of Miocene age and are commonly associated with zeolites and silica minerals. Degrees of ordering of interstratification of the minerals change discontinuously from Reichweite g = 0 (100–55% expandable layers) to g = 1 (45–20% expandable layers), and from g = 1 to g = 2 (<20% expandable layers). This pattern of conversion differs from the behavior of mica/smectites during burial diagenesis which undergo a continuous change in ordering type, and from the behavior of rectorite which displays a constant expandability and ordering (45–55%) over a wide range of conditions. Differences between these minerals were also found in the relationships between expandability and total layer charge, and between expandability and number of non-exchangeable interlayer cations. In mica/smectites from the Shinzan area, chemical changes in the interlayers and tetrahedral and octahedral sites are consistent with a reaction in which K-enrichment and K-fixation in the interlayers are controlled by an increase in negative layer charge. This conversion occurred in response to a steep geothermal gradient and migrating hydrothermal solutions.

Резюме

Резюме

Полные серии видоизменения для слюд/смектитов были найдены в кармане гидротермического изменения вокруг Куроко-типа залежей руды в Шинзан области, Акита префектура, Северно-восточная Япония. Минералы явдяются продуктом видоизменения вулканического стекла миоценовой эпохи и обычно связываются с цеолитами и кремнеземными минералами. Степени упорядочения переслаивания минералов изменяются прерывисто от числа Рейхвейта g = 0 (100-55% расширяющихся слоев) до g = 1 (45-20% расширяющихся слоев) и от g = 1 до g = 2 (<20% расширяющихся слоев). Этот образец превращения отличается от поведения слюды/смектитов в течение периода диагенеза погребений, которые претерпевают непрерывное изменение типа упорядочения, и от поведения ректорита, который проявлет постоянную способность к расширению и упорядочению (45-55%) в широким диапазоне условий. Различия межлу этими минералами были также найдены и в области соотношений между расширяемостью и полным зарядом слоя, и между расширяемостью и числом необмениваемых межслойных катиогов. Химические изменения в прослойке и в четырехгранных и восьмигранных местах в слюдах/ смектитах из Шинзан области согласуются с реакцией, в которой обогащение прослойки калием и фиксация калия в прослойке контролируется увеличением отрицательного заряда слоя. Это превращение происхоит как реакция на большой геотермальный градиент и миграцию гидротермальных растворов. [Е.С.]

Resümee

Resümee

Eine vollständige Umwandlungsserie von Glimmer/Smektite wurde in einer hydrothermalen Umwandlungszone um Erzlagerstätten vom Kuroko-Typ im Shinzangebiet, Akita Prefecture, NO Japan, gefunden. Die Minerale sind Umwandlungsprodukte von vulkanischem Glas aus dem Miozän und treten im allgemeinen zusammen mit Zeolithen und SiO2-Mineralen auf. Der Ordungsgrad der Wechsellagerung in den Mineralen ändert sich diskontinuierlich von der Reichweite g = 0 (100–55% expandierbare Lagen) bis g = 1 (45–20% expandierbare Lagen), und von g = 1 bis g = 2 (<20% expandierbare Lagen). Dieses Umwandlungsschema unterscheidet sich vom Verhalten Glimmer/Smektite, das durch Versenkungsdiagenese hervorgerufen wird, in dem eine kontinuierliche Veränderung im Ordnungszustand stattfindet. Es unterscheidet sich auch vom Verhalten von Rektorit, der über einen großen Bedingungsbereich eine konstante Expandierbarkeit und Ordnung (45–55%) zeigt. Unterschiede zwischen diesen Mineralen wurden auch in der Beziehung zwischen Expandierbarkeit und Gesamtladung der Schichten und zwischen Expandierbarkeit und Anzahl der nichtaustauschbaren Zwischenschichtkationen gefunden. In den Glimmer/Smektit-Wechsellagerungen aus dem Shinzangebiet hängen chemische Veränderungen in den Zwischenschichten sowie auf den tetraedrischen und oktaedrischen Plätzen mit einer Reaktion zusammen, bei der die K-Anreicherung und K-Fixierung in den Zwischenschichten durch eine Zunahme der negativen Schichtladung kontrolliert wird. Diese Umwandlung ist die Folge eines steilen geothermischen Gradienten und wandernder hydrothermaler Lösungen. [U.W.]

Résumé

Résumé

Une série de conversion complète pour des mica/smectites a été trouvée dans une enveloppe d'altération hydrothermique autour de dépôts de minéraux du type Kuroko dans la région Shinzan, Préfecture d'Akita, Japon du Nord-Est. Les minéraux sont un produit de l'altération de verre volcanique d'age Miocène, et sont souvent associés avec des zéolites et des minéraux silices. Les degrés d'ordonnement d'interstratification des minéraux changent de manière discontinue de Reichweite g = 0 (100–55% de couches expansibles) à g = 1 (45–20% de couches expansibles) et de g = 1 à g = 2 (<20% de couches expansibles). Ce procédé de conversion diffère du comportement de mica/smectites pendant la diagénèse d'ensevelissement; celles-ci subissent alors un changement de type d'ordonnement continuel; et aussi du comportement de la rectorite qui montre un potentiel d'expansion et un ordonnement (45–55%) constants sur une large gamme de conditions. Des différences entre les relations de potentiel d'expansion et la charge totale de couche, et du potentiel d'expansion et du nombre de cations intercouche non-échangeables de ces minéraux ont aussi été trouvées. Dans les micas/smectites de la région Shinzan, des changements chimiques dans les intercouches et dans les sites tétraèdraux et octaèdraux sont compatibles avec une réaction dans laquelle l'enrichissement de K et la fixation de K dans les intercouches sont contrôlés par une augmentation de la charge négative de couche. Cette conversion s'est produite en réaction à un raide gradient géothermique et à des solutions hydrothermiques émigrantes. [D.J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Brindley, G. W., 1956 Allevardite, a swelling double-layer mica mineral Amer. Mineral. 41 91103.Google Scholar
Brindley, G. W. and Sandalaki, Z., 1963 Structure, composition and genesis of some long-spacing mica-like minerals Amer. Mineral 48 138149.Google Scholar
Brust, J. F. Jr., 1969 Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration Amer. Assoc. Petrol. Geol. Bull. 53 7393.Google Scholar
Campbell, A. S. and Fyfe, W. S., 1965 Analcime-albite equilibria Amer. Jour. Sci. 263 807816.CrossRefGoogle Scholar
Eberl, D. D., 1980 Alkali cation selectivity and fixation by clay minerals Clays & Clay Minerals 28 161172.CrossRefGoogle Scholar
Eberl, D. D. and Hower, J., 1977 The hydrothermal transformation of sodium and potassium smectite into mixed layer clay Clays & Clay Minerals 25 215227.CrossRefGoogle Scholar
Eslinger, E., Highsmith, P., Albers, D. and DeMayo, B., 1979 Role of iron reduction in the conversion of smectite to illite in bentonites in the Disturbed Belt, Montana Clays & Clay Minerals 27 327338.CrossRefGoogle Scholar
Foscolos, A. F. and Kodama, H., 1974 Diagenesis of clay minerals from lower Cretaceous shales of northeastern British Columbia Clays & Clay Minerals 22 319336.CrossRefGoogle Scholar
Hattori, K. and Muehlenbachs, K., 1980 Marine hydro-thermal alteration at a Kuroko ore deposit, Kosaka, Japan Contrib. Mineral. Petrol. 74 285292.CrossRefGoogle Scholar
Higashi, S., 1974 Sericite and interstratified sericite-mont-morillonite associated with Kuroko deposits in the Hokuro-ku district, Japan Clay Sci. 4 243253.Google Scholar
Higashi, S., 1980 Mineralogical studies of hydrothermal dioctahedral mica minerals Memoirs Fac. Sci. Kochi Univ., Series E: Geology 1 139.Google Scholar
Hower, J. and Mowatt, T., 1966 The mineralogy of the illite and illite/montmorillonite group Amer. Mineral. 51 825854.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull. 87 725737.2.0.CO;2>CrossRefGoogle Scholar
Ichikuni, M., 1975 A chemical model for black ore-forming solution J. Japan. Assoc. Mineral. Petrol. Econ. Geol. 70 7178.CrossRefGoogle Scholar
Iijima, A., 1974 Clay and zeolitic alteration zones surrounding Kuroko deposits in the Hokuroku district, northern Akita, as submarine hydrothermal-diagenetic alteration products Geology of Kuroko Deposits, Mining Geol. Spec. Issue 6 267289.Google Scholar
Iijima, A. and Utada, M., 1971 Present-day zeolitic diagenesis of the Neogene geosynclinal deposits in the Niigata oil field, Japan Advances in Chemistry Series 101 342349.CrossRefGoogle Scholar
Inoue, A., 1980 The transformation from montmorillonite into illite through their interstratified minerals .Google Scholar
Inoue, A., 1983 Potassium fixation by clay minerals during hydrothermal treatment Clays & Clay Minerals 31 8191.CrossRefGoogle Scholar
Inoue, A. and Minato, H., 1979 Ca-K exchange reaction and interstratification in montmoriilonite Clays & Clay Minerals 27 393401.CrossRefGoogle Scholar
Inoue, A., Minato, H. and Utada, M., 1978 Mineralogical properties and occurrence of illite/montmorillonite mixed layer minerals formed from Miocene volcanic glass in Waga-Omono district Clay Sci. 5 123136.Google Scholar
Inoue, A., Shimizu, I. and Minato, H., 1981 Mass transfer during alteration of phlogopite in calcium-bearing acid aqueous solution Clay Sci. 5 283297.Google Scholar
Kajiwara, Y., 1973 Chemical composition of ore-forming solution responsible for the Kuroko type mineralization in Japan Geochem. J. 6 141149.CrossRefGoogle Scholar
Kakinoki, J. and Komura, Y., 1952 Intensity of X-ray diffraction by a one-dimensionally disordered crystal. I. General derivation in cases of “Reichweite” s = 0 and 1 J. Phys. Soc. Japan 7 3035.CrossRefGoogle Scholar
Kodama, H., 1966 The nature of the component layer of rectorite Amer. Mineral. 51 10351055.Google Scholar
Kodama, H., Shimoda, S., Sudo, T. and Heller, L., 1969 Hydrous mica complexes: their structure and chemical composition Proc. Int. Clay Conf. Tokyo, 1969 Jerusalem Israel Univ. Press 185196.Google Scholar
Matsuda, T., Henmi, K., Nagasawa, K. and Honda, S., 1981 Chemical compositions and X-ray properties of regularly interstratified mica-smectites J. Miner. Soc. Japan, Spec. Issue 15 96106.Google Scholar
Matsuda, T., Nagasawa, K., Tsuzuki, Y. and Henmi, K., 1981 Regularly interstratified dioctahedral mica-smectite from Roseki deposits in Japan Clay Miner. 16 91102.CrossRefGoogle Scholar
Perry, E. and Hower, J., 1970 Burial diagenesis in Gulf Coast pelitic sediments Clays & Clay Minerals 18 165178.CrossRefGoogle Scholar
Reynolds, R. C. and Hower, J., 1970 The nature of inter-layering in mixed layer illite-montmorillonite Clays & Clay Minerals 18 2536.CrossRefGoogle Scholar
Sato, M., 1973 X-ray analysis of interstratified structure Nendo Kagaku (J. Clay Sci. Soc. Japan) 13 3947.Google Scholar
Sato, T., 1973 A chloride complex model for Kuroko mineralization Geochem. J. 7 245270.CrossRefGoogle Scholar
Shikazono, N., 1976 Chemical composition of Kuroko ore forming solution J. Japan. Assoc. Mineral. Petrol. Econ. Geol. 71 201215.CrossRefGoogle Scholar
Shimoda, S., 1970 A hydromuscovite from the Shakanai mine, Akita Prefecture, Japan Clays & Clav Minerals 18 269274.CrossRefGoogle Scholar
Shimoda, S., 1972 An interstratified mineral of mica and montmorillonite from the mineralized district at Niida near the Shakanai mine, Akita Prefecture, Japan Clav Sci. 4 115125.Google Scholar
Shimoda, S. and Sudo, T., 1960 An interstratified mixture of mica clay minerals Amer. Mineral. 45 10691077.Google Scholar
Shimoda, S., Tomita, K. and Matsukura, Y., 1983 Diagenetic alteration of clay minerals: an example at Ohashiza-wa of Sinjo Basin Diagenesis of Sediments, J. Sedimentol. Soc. Japan Spec. Issue 17/18/19 8998 in Japanese.Google Scholar
Shirozu, H. and Higashi, S., 1972 X-ray examination of sericite minerals associated with the Kuroko deposits Clav Sci. 4 137142.Google Scholar
Shirozu, H. and Iwasaki, T., 1980 Clay minerals in alteration zones of Kuroko deposits, with special reference to montmorillonite J. Japan. Assoc. Mineral. Petrol. Econ. Geol., Spec. Issue 2 115121 in Japanese.Google Scholar
Srodon, J., Mortland, M. M. and Farmer, V. C., 1979 Correlation between coal and clay diagenesis in the Carboniferous of the upper Silesian Coal Basin Proc. Intern. Clay Conf., Oxford, 1978 Amsterdam Elsevier 251260.Google Scholar
Sudo, T., Hayashi, H., Shimoda, S. and Swineford, A., 1962 Mineral-ogical problems of intermediate clay minerals Clays and Clay Minerals Proc. 9th Natl. Conf, West Lafayette, Indiana, 1960 New York Pergamon Press 378392.Google Scholar
Utada, M., 1968 Migration of chemical components related to zeolitization zoning of Tertiary sediments in the Kanto Basin, Japan Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 18 279306.Google Scholar
Utada, M. and Ishikawa, T., 1973 Alteration zones surrounding “Kuroko-type” ore deposits in Nishiaizu District—especially the analcime zone for an indicator of exploration of the ore deposits Mining Geol. 23 213226 in Japanese.Google Scholar
Watanabe, T., 1980 On the component layer of interstratified illite/montmorillonite Sci. Repts. Dept. Geol. Kyushu Univ. 13 225231 in Japanese.Google Scholar
Watanabe, T., 1981 Identification of illite/montmorillonite interstratifications by X-ray powder diffraction J. Miner. Soc. Japan, Spec. Issue 15 3241.Google Scholar
Weaver, C. E. and Beck, K. C., 1971 Clay water diagenesis during burial: how mud becomes gneiss Geol. Soc. Amer. Spec. Paper 134 178.Google Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar