Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T06:21:02.738Z Has data issue: false hasContentIssue false

Formation of Polymeric Species in the Interlayer of Bentonite

Published online by Cambridge University Press:  01 July 2024

J. C. Bart
Affiliation:
Montedison “G. Donegani” Research Laboratories, Via G. Fauser 4, Novara, Italy
F. Cariati
Affiliation:
Istituto di Chimica Generale, Università di Sassari, Italy
L. Erre
Affiliation:
Istituto di Chimica Generale, Università di Sassari, Italy
C. Gessa
Affiliation:
Istituto di Chimica Agraria, Università di Sassari, Italy
G. Micera
Affiliation:
Istituto di Chimica Generale, Università di Sassari, Italy
P. Piu
Affiliation:
Istituto di Chimica Generale, Università di Sassari, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Infrared spectroscopic, X-ray powder diffraction, diffuse reflectance, and electron-spin resonance examination of homoionic bentonite from Sardinia treated with diazomethane indicates that poly-methylene was formed in the interlayer position. Polymerization can be attributed to the acidic properties of the residual water in the interlamellar space, depending on the nature of the exchanged ion. The presence of an interlayer polymer causes the clay to assume strong hydrophobic properties.

Резюме

Резюме

Гомоионный бентонит из Сардинии, обработанный диазометаном, изучался с помощью инфракрасной спектроскопии, порошкового метода рентгеноструктурного анализа, рассеянного отражения и электронноспинного резонанса. Было установлено, что полиметилен формируется в межслойных промежутках. Полимеризация связана с кислотными свойствами остаточной воды в межслойном пространстве, зависящими от природы обменного иона. Присутствие межслойного полимера обуславливает сильные гидрофобные свойства глины.

Resümee

Resümee

Untersuchungen mit Infrarotspektroskopie, Röntgenpulverdiffraktometrie, diffusem Reflexi-onsvermögen, und Elektronenspinresonanz an Bentonit von Sardinien, der nur eine Art von Kation hat und der mit Diazomethan behandelt wurde, zeigen die Bildung von Polymethylen in der Zwischenschichtposition. Die Polymerisation kann auf die sauren Eigenschaften des Restwassers im interlamellaren Zwischenraum zurückgeführt werden, die von der Art des ausgetauschten Ions abhängen. Die Anwesenheit von Zwischenschichtpolymeren ist die Ursache, daß der Ton stark hydrophobe Eigenschaften annimmt.

Résumé

Résumé

L'examen à la spectroscopic infra-rouge, à la diffraction aux rayons-X, à la réfléchissance diffuse, et à la résonance de spin d’électrons d'une bentonite homoionique de Sardaigne traitée au diazométhane indique que le polyméthylène à été formé dans la position intercouche. La polymérisation peut être attribuée aux propriétés acides de l'eau résiduelle dans l'espace interfeuillet, dépendant de la nature de l'ion échangé. L'argile prend des propriétés fortement hydrophobiques à cause de la présence d'un polymère intercouche.

Type
Research Article
Copyright
Copyright © 1979, The Clay Minerals Society

References

Aragón de la Cruz, F. (1965) Interlamellar sorption in a ‘methylated’ montmorillonite: Nature 205, 381382.CrossRefGoogle Scholar
Berger, G. (1941) The structure of montmorillonite: preliminary communication on the ability of clays and clay minerals to be methylated: Chem. Weekbl. 38, 4243.Google Scholar
Berger, G. (1947) The structure of montmorillonite: preliminary communication on the capacity of clays and clay minerals to be methylated: C. R. Pedol. Conf. Mediterranean, 119122.Google Scholar
Brown, G., ed. (1961) The X-Ray Identification and Crystal Structures of Clay Minerals: Mineralogical Society, London, 544 pp.Google Scholar
Brown, G., Green-Kelly, R., and Norrish, K. (1952) Organic derivatives of montmorillonite: Nature 169, 756757.CrossRefGoogle Scholar
Buckley, G. D., Cross, L. H., and Ray, N. H. (1950) The copper-catalyzed decomposition of aliphatic diazo-compounds: The formation of paraffins of high molecular weight: J. Chem. Soc., 27142718.CrossRefGoogle Scholar
Clementz, D. M., Pinnavaia, T. J., and Mortland, M. M. (1973) Stereochemistry of hydrated copper (II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study: J. Phys. Chem. 77, 196200.CrossRefGoogle Scholar
Davies, A. G., Hare, D. G., Khan, O. R., and Sikora, J. (1963) Monomethylation and polymethylenation by diazo-methane in the presence of boron compounds: J. Chem. Soc., 44614471.CrossRefGoogle Scholar
Deuel, H. (1957) Organische derivate von tonmineralen: Agrochimica 1, 248267.Google Scholar
Edelman, C. H. (1947) Relation entre les propriétés et la structure de quelques minéraux argileux: Verre Silicates Ind. 21, 36.Google Scholar
Franco, M. A., Gessa, C., and Cariati, F. (1978) Identification of tetramethylammonium ion in methylated NH4-bentonite: Clays & Clay Minerals 26, 7375.CrossRefGoogle Scholar
Gessa, C., Palmieri, F., and Franco, M. A. (1978) Potentiometric titration of methylated homoionic bentonites: Geoderma 21, 161173.Google Scholar
Greenland, D. J. and Russell, E. W. (1955) Organoclay derivatives and the origin of the negative charge on clay particles: Trans. Faraday Soc. 51, 13001307.CrossRefGoogle Scholar
Hammond, G. S. and Williams, R. M. (1962) Mechanism of the reaction of acetylacetone with diazomethane: J. Org. Chem. 27, 37753778.CrossRefGoogle Scholar
Hathaway, B. J. and Billing, D. E. (1970) Electronic properties and stereochemistry of mononuclear complexes of the copper (II) ion: Coord. Chem. Rev. 5, 143207.CrossRefGoogle Scholar
Martin-Vivaldi, J. L. and Del Pino Vazquez, C. (1956) Study of the surface of silicates with laminar structure by methylation with diazomethane. I. Minerals of the kaolin group: Trabajos Reunión Intern. Reactividad Solidos, Madrid 2, 459479.Google Scholar
McBride, M. B., Pinnavaia, T. J., and Mortland, M. M. (1975) Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surface: J. Phys. Chem. 79, 24302435.CrossRefGoogle Scholar
Mortland, M. M. (1968) Protonation of compounds at clay mineral surfaces: Trans. 9th Congr. Int. Soil Sci. Soc., Adelaide I, 691699.Google Scholar
Nakanishi, K. (1962) Infrared Absorption Spectroscopy: Holden-Day, San Francisco, 233 pp.Google Scholar
Thompson, H. W. and Torkington, P. (1945a) The infrared spectra of polymers and related monomers (I): Proc. Roy. Soc. A 184, 320.Google Scholar
Thompson, H. W. and Torkington, P. (1945b) The infrared spectra of polymers and related monomers (II): Proc. Roy. Soc. A 184, 2141.Google Scholar
Vivaldi, J. L. and Hendricks, S. B. (1952) Reactivity of the H ions of clays in nonpolar solutions. I. Action of diazomethane: Anal. Edaf. y Fisiol. Veg. 11, 601629.Google Scholar