Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-12T19:44:16.375Z Has data issue: false hasContentIssue false

Ferrihydrite: Surface Structure and Its Effects on Phase Transformation

Published online by Cambridge University Press:  28 February 2024

Jianmin Zhao
Affiliation:
The Consortium for Fossil Fuel Liquefaction Science, 341 Bowman Hall, University of Kentucky Lexington, Kentucky 40506
Frank E. Huggins
Affiliation:
The Consortium for Fossil Fuel Liquefaction Science, 341 Bowman Hall, University of Kentucky Lexington, Kentucky 40506
Zhen Feng
Affiliation:
The Consortium for Fossil Fuel Liquefaction Science, 341 Bowman Hall, University of Kentucky Lexington, Kentucky 40506
Gerald P. Huffman
Affiliation:
The Consortium for Fossil Fuel Liquefaction Science, 341 Bowman Hall, University of Kentucky Lexington, Kentucky 40506
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray absorption fine structure (XAFS) spectra were collected on a series of ferrihydrite samples prepared over a range of precipitation and drying conditions. Analysis of the XAFS pre-edge structures shows clear evidence of the presence of lower coordination sites in the material. These sites, which are most likely tetrahedral, are believed to be at the surface and become coordination unsaturated (CUS) after dehydroxylation. With chemisorbed water molecules, the CUS sites become the crystal growth sites responsible for the phase transformation of ferrihydrite to hematite at low temperatures. On the other hand, when impurity anions such as SiO4−4 are present in the precipitation solution, the CUS sites may instead absorb the impurity anions, thereby blocking the crystal growth sites and inhibiting the formation of hematite.

Type
Research Article
Copyright
Copyright © 1994, Clay Minerals Society

References

Armstrong, R. J., Morrish, A. H., and Sawatzky, G. A.. 1966 . Mössbauer study of ferric ions in the tetrahedral and octahedral sites of a spinel. Phys. Lett. 23: 414416.CrossRefGoogle Scholar
Cardile, C. M., 1988. Tetrahedral Fe3+ in ferrihydrite: 57Fe Mössbauer spectroscopic evidence. Clays & Clay Miner, 36: 537539.CrossRefGoogle Scholar
Cornell, R. M., and Schwertmann, U.. 1979 . Influence of organic anions on the crystallization of ferrihydrite. Clays & Clay Miner. 27: 402410.CrossRefGoogle Scholar
Eggleton, R. A., and Fitzpatrick, R. W.. 1988 . New data and a revised structural model for ferrihydrite. Clays & Clay Miner. 36: 111124.CrossRefGoogle Scholar
Feng, Z., Zhao, J., Huggins, F. E., and Huffman, G. P.. 1993 . Agglomeration and phase transition of a nanophase iron oxide catalyst. J. Catal. 143: 510519.CrossRefGoogle Scholar
Fleischer, M., Chao, G. Y., and Kato, A.. 1975 . New mineral names. Am. Mineral. 60: 485486.Google Scholar
Fuller, C. C., Davis, J. A., and Waychunas, G. A.. 1993 . Surface chemistry of ferrihydrite: Part II. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta 57: 22712282.CrossRefGoogle Scholar
Ganguly, B., Huggins, F. E., and Feng, Z., and Huffman, G. P.. 1994 . Anomalous recoilless fraction of 30 Å FeOOH particles. Phys. Rev. B. 49: 30363042.CrossRefGoogle ScholarPubMed
Ganguly, B., Huggins, F. E., Rao, K. R. P. M., and Huffman, G. P.. 1993 . Determination of the particle size distribution of iron oxide catalysts from superparamagnetic Mössbauer relaxation spectra. J. Catal. 142: 552560.CrossRefGoogle Scholar
Greaves, G. N., Durham, P. J., Diaken, G., and Quin, P.. 1981 . Near-edge absorption spectra for metallic Cu and Mn. Nature 294: 139141.CrossRefGoogle ScholarPubMed
Haneda, K., and Morrish, A. H.. 1977 . On the hyperfine field of γ-Fe2O3 small particles. Phys. Lett. 64A: 259262.CrossRefGoogle Scholar
Hargrove, R. S., and Kündig, W.. 1970 . Mössbauer measurements of magnetite below the Verwey transition. Solid State Comm. 8: 303308.CrossRefGoogle Scholar
Heald, S. M., 1988. Design of an EXAFS experiment. In X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Koningsberger, D. C., and Prins, R., eds. New York: John Wiley, 87118.Google Scholar
Huffman, G. P., Ganguly, B., Zhao, J., Rao, K. R. P. M., Shah, N., Feng, Z., Huggins, F. E., Taghiei, M. M., Lu, F., Wender, I., Pradhan, V. R., Tierney, J. W., Seehra, M. M., Ibrahim, M. M., Shabtai, J., and Eyring, E. M.. 1993 . Structure and dispersion of iron-based catalyst for direct coal liquefaction. Energy Fuels 7: 285296.CrossRefGoogle Scholar
Johnston, J. H., and Lewis, D. G.. 1983 . A detailed study of the transformation of ferrihydrite to hematite in an aqueous medium at 92°C. Geochem. Cosmochim. Acta 47: 18231831.CrossRefGoogle Scholar
Karim, Z., 1984. Characterization of ferrihydrites formed by oxidation of FeCl2 solutions containing different amounts of silica. Clays & Clay Miner. 32: 181184.CrossRefGoogle Scholar
Knözinger, H., and Ratnasamy, P.. 1978 . Catalytic aluminas: Surface models and characterization of surface sites. Catal. Rev.-Sci. Eng. 17: 3170.CrossRefGoogle Scholar
Liaw, B. J., Cheng, D. S., and Yang, B. L.. 1989 . Oxidative dehydrogenation of 1-butene on iron oxyhydroxides and hydrated iron oxides. J. Catal. 118: 312326.CrossRefGoogle Scholar
Marfunin, A. S., 1974. Physics of Minerals and Inorganic Materials. New York: Springer-Verlag, 216227.Google Scholar
Manceau, A., Combes, J.-M., and Calas, G.. 1990 . New data and a revised structural model for ferrihydrite. Clays & Clay Miner. 38: 331334.CrossRefGoogle Scholar
McNab, T. K., Fox, R. A., and Boyle, A. F. J.. 1968 . Some magnetic properties of magnetite (Fe3O4) microcrystals. J. Appl. Phys. 39: 57035711.CrossRefGoogle Scholar
Morrish, A. H., Haneda, K., and Schurer, P. J.. 1976 . Surface magnetic structure of small γ-Fe2O3 particles. J. de Physique C6: 301305.Google Scholar
Morup, S., 1983. Mössbauer spectroscopy studies of suspensions of Fe3O4 microcrystals. J. Magn. Magn. Materials 39: 4547.CrossRefGoogle Scholar
Murad, E., 1988. The Mössbauer spectrum of “well”-crystallized ferrihydrite. J. Magn. Magn. Materials 74: 153157.CrossRefGoogle Scholar
Pankhurst, Q. A., and Pollard, R. J.. 1992 . Structural and magnetic properties of ferrihydrite. Clays & Clay Miner. 40: 268272.CrossRefGoogle Scholar
Quin, T. G., Long, G. J., Benson, C. G., Mann, S., and Williams, R. J. P.. 1988 . Influence of silicon and phosphorus on structural and magnetic properties of synthetic goethite and related oxides. Clays & Clay Miner. 36: 165175.CrossRefGoogle Scholar
Roe, A. L., Schneider, D. J., Mayer, R. J., Pytz, J. W., Widom, J., and Que, L. Jr. 1984 . X-ray absorption spectroscopy of iron-tyrosinate protein. J. Am. Chem. Soc. 106: 16761681.CrossRefGoogle Scholar
Rudy, T. P., and Goodson, F. R.. 1991 . Method for making iron oxide catalyst. U.S. Patent 5,047,382.Google Scholar
Russell, J. D., 1979. Infrared spectroscopy of ferrihydrite: Evidence for the presence of structural hydroxyl groups. Clay Miner. 14: 109113.CrossRefGoogle Scholar
Sayers, D. E., and Bunker, B. A.. Data analysis. In X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES. Koningsberger, D. C., and Prins, R., 1988 eds. New York: John Wiley, 211256.Google Scholar
Schwertmann, U., and Cornell, R. M.. 1991 . Iron Oxides in the Laboratory. Weinheim: VCH, Weinheim City in Germany, 8994.Google Scholar
Schwertmann, U., and Thalmann, H.. 1979 . The influence of [Fe(II): cb, {Si}, and pH on the formation of lepidocrocite and ferrihydrite during oxidation of aqueous FeCl2 solution. Clay Miner. 11: 189200.CrossRefGoogle Scholar
Shulman, R. G., Yafet, Y., Eisenberger, P., and Blumberg, W. E.. 1976 . Observation and interpretation of x-ray absorption edges in iron compounds and proteins. Proc. Natl. Acad. Sci. USA, 5: 13841388.CrossRefGoogle Scholar
Towe, K. M., and Bradley, W. F.. 1967 . Mineralogical constitution of colloidal “hydrous ferric oxides.” J. Colloid Interface Science 24: 383392.CrossRefGoogle Scholar
Van der Kraan, A. M., 1973. Mössbauer effect studies of surface ions of ultrafine α-Fe2O3 particles. Phys. Stat. Sol. 18: 215226.CrossRefGoogle Scholar
Waychunas, G. A., Rea, B. A., Fuller, C. C., and Davis, J. A.. 1993 . Surface chemistry of ferrihydrite: Part I. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57: 22512269.CrossRefGoogle Scholar
Zhao, J., Feng, Z., Huggins, F. E., Shah, N., Huffman, G. P., and Wender, I.. 1994 . Role of molybdenum at the iron oxide surface. J. Catal. 148: 194197.CrossRefGoogle Scholar
Zhao, J., Huggins, F. E., Feng, Z., Lu, F., Shah, N., and Huffman, G. P.. 1993 . Structure of a nanophase iron oxide catalyst. J. Catal. 143: 499509.CrossRefGoogle Scholar