Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T22:45:58.442Z Has data issue: false hasContentIssue false

Feasible Synthesis of TiO2 Deposited on Kaolin for Photocatalytic Applications

Published online by Cambridge University Press:  01 January 2024

Jiří Henych*
Affiliation:
Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Husinec-Řež, Czech Republic Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic
Václav Štengl
Affiliation:
Department of Solid State Chemistry, Institute of Inorganic Chemistry AS CR v.v.i., 250 68 Husinec-Řež, Czech Republic Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem, Czech Republic
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of the present study was to synthesize a photocatalyst on the basis of TiO2 with kaolin as the support material. Properties such as layered structure and a suitable particle size of kaolin could be beneficial in the production of a high-quality and relatively cheap photocatalyst on an industrial scale. Homogeneous hydrolysis with urea as a precipitation agent and kaolin as support material was used to obtain a kaolin surface covered with TiO2. Samples were characterized by means of X-ray powder diffraction, infrared and Raman spectroscopy, high-resolution transmission electron microscopy, Brunauer-Emmett-Teller surface area, and Barrett-Joyner-Halenda porosity determination. Photocatalytic activity was assessed by a Reactive Black 5 azo dye discoloration in a water suspension and by acetone decomposition on a thin layer of sample in a gas phase. The characterization confirmed that the well crystallized TiO2 was distributed effectively over the whole surface of a kaolin substrate, and photocatalytic tests revealed that the active surface layer of titania particles on kaolin performed well, suggesting that kaolin acts as a suitable support.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2013

References

Ahn, B-T., Kim, E.-Y., and Kim, D.S. (2009) Synthesis of mesoporous TiO2 and its application to photocatalytic activation of methylene blue and E. coli. The Bulletin of the Korean Chemical Society, 30, 193-196.Google Scholar
Barrett, E.P., Joyner, L.G., and Halenda, P.P., 1951)(The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73, 373-380.CrossRefGoogle Scholar
Belessi, V., Lambropoulou, D. Konstantinou, I. Katsoulidis, A. Pomonis, P. Petridis, D. and Albanis, T., 2007 Structure and photocatalytic performance of TiO2/clay nanocomposites for the degradation of dimethachlor Applied Catalysis B-Environmental 73 292299.CrossRefGoogle Scholar
Bish, D.L., 1993 Rietveld refinement of the kaolinite structure at 1.5 K Clays and Clay Minerals 41 738744.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 60 309319.CrossRefGoogle Scholar
Chang, S.S. Clair, B. Ruelle, J. Beauchêne, J. Di Renzo, F. Quignard, F. Zhao, G.J. Yamamoto, H. and Gril, J., 2009 Mesoporosity as a new parameter for understanding tension stress generation in trees Journal of Experimental Botany 60 30233030.CrossRefGoogle ScholarPubMed
Chen, J.Y. Li, G.Y. He, Z.G. and An, T.C., 2011 Adsorption and degradation of model volatile organic compounds by a combined titania-montmorillonite-silica photocatalyst Journal of Hazardous Materials 190 416423.CrossRefGoogle ScholarPubMed
Chen, K. Li, J. Wang, W. Zhang, Y. Wang, X. and Su, H., 2011 The preparation of vanadium-doped TiO(2)-montmorillonite nanocomposites and the photodegradation of sulforhodamine B under visible light irradiation Applied Surface Science 257 72767285.CrossRefGoogle Scholar
Choi, H. Sofranko, A.C. and Dionysiou, D.D., 2006 Nanocrystalline TiO2 photocatalytic membranes with a hierarchical mesoporous multilayer structure: Synthesis, characterization, and multifunction Advanced Functional Materials 16 10671074.CrossRefGoogle Scholar
Chong, M.N. Vimonses, V. Lei, S. Jin, B. Chow, C. and Saint, C., 2009 Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst Microporous and Mesoporous Materials 117 233242.CrossRefGoogle Scholar
Choy, J.H. Park, J.H. and Yoon, J.B., 1998 Multilayered SiO2/TiO2 nanosol particles in two-dimensional aluminosilicate catalyst-support Journal of Physical Chemistry B 102 59915995.CrossRefGoogle Scholar
Ctibor, P. Ageorges, H. Stengl, V. Murafa, N. Pis, I. Zahoranova, T. Nehasil, V. and Pala, Z., 2011 Structure and properties of plasma sprayed BaTiO3 coatings: Spray parameters versus structure and photocatalytic activity Ceramics International 37 25612567.CrossRefGoogle Scholar
Damodar, R.A. and You, S.J., 2010 Performance of an integrated membrane photocatalytic reactor for the removal of Reactive Black 5 Separation and Purification Technology 71 4449.CrossRefGoogle Scholar
Demirev, A. and Nenov, V., 2005 Ozonation of two acidic azo dyes with different substituents Ozone-Science & Engineering 27 475485.CrossRefGoogle Scholar
Ding, X.J. An, T. Li, G. Zhang, S. Chen, J. Yuan, J. Zhao, H. Chen, H. Sheng, G. and Fu, J., 2008 Preparation and characterization of hydrophobic TiO2 pillared clay: The effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity Journal of Colloid and Interface Science 320 501507.CrossRefGoogle ScholarPubMed
Ding, Z. Zhu, H.Y. Greenfield, P.F. and Lu, G.Q., 2001 Characterization of pore structure and coordination of titanium in TiO2 and SiO2-TiO2 sol-pillared clays Journal of Colloid and Interface Science 238 267272.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, The Mineralogical Society, London.CrossRefGoogle Scholar
Guillard, C. Disdier, J. Monnet, C. Dussaud, J. Malato, S. Blanco, J. Maldonado, M.I. and Herrmann, J.-M., 2003 Solar efficiency of a new deposited titania photocatalyst: chlorophenol, pesticide and dye removal applications Applied Catalysis B-Environmental 46 319332.CrossRefGoogle Scholar
Gupta, S.M. and Tripathi, M., 2012 A review on the synthesis of TiO2 nanoparticles by solution route Central European Journal of Chemistry 10 279294.Google Scholar
Hamal, D.B. and Klabunde, K.J., 2007 Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2 Journal of Colloid and Interface Science 311 514522.CrossRefGoogle ScholarPubMed
Hermosin, M.C. Martin, P. and Cornejo, J., 1993 Adsorption mechanisms of monobutyl tin in clay minerals Environmental Science & Technology 27 26062611.CrossRefGoogle Scholar
ICSD Database, 2008 ICSD Database Germany FIZ Karlsruhe.Google Scholar
Jiang, Z. Kong, L. Alenazey, F.S. Qian, Y. Xiao, T. and Edwards, P.P., 2013.Enhanced visible-light-driven photocatalytic activity of mesoporous TiO2-xNx derived from ethylenediamine-based complexes NanoscaleCrossRefGoogle Scholar
JCPDS PDF-2, 2001 JCPDS PDF-2 ICDD PA, USA Newtown Square.Google Scholar
Johnston, C.T. Agnew, S.F. and Bish, D.L., 1990 Polarized single-crystal Fourier-transform infrared microscopy of Ouray dickite and Keokuk kaolinite Clays and Clay Minerals 38 573583.CrossRefGoogle Scholar
Konstantinou, I.K. and Albanis, T.A., 2004 TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations — A review Applied Catalysis B-Environmental 49 114.CrossRefGoogle Scholar
Kun, R. Mogyorosi, K. and Dekany, I., 2006 Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites Applied Clay Science 32 99110.CrossRefGoogle Scholar
Kutlakova, K.M. Tokarsky, J. Kovar, P. Vojteskova, S. Kovarova, A. Smetana, B. Kukutschova, J. Capkova, P. and Matejka, V., 2011 Preparation and characterization of photoactive composite kaolinite/TiO2 Journal of Hazardous Materials 188 212220.CrossRefGoogle Scholar
Lachheb, H. Puzenat, E. Houas, A. Ksibi, M. Elaloui, E. Guillard, C. and Herrmann, J.-M., 2002 Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania Applied Catalysis B-Environmental 39 7590.CrossRefGoogle Scholar
Li, Q. Xu, Z. Gao, S. and Shang, J.K., 2010 As(III) removal by hydrous titanium dioxide prepared from one-step hydrolysis of aqueous TiCl4 solution Water Research 44 57135721.Google Scholar
Mao, H.H. Li, B. Li, X. Yue, L. Xu, J. Ding, B. Gao, X. and Zhou, Z., 2010 Facile synthesis and catalytic properties of titanium containing silica-pillared clay derivatives with ordered mesoporous structure through a novel intra-gallery templating method Microporous and Mesoporous Materials 130 314321.CrossRefGoogle Scholar
Menesi, J. Korosi, L. Bazso, E. Zollmer, V. Richardt, A. and Dekany, I., 2008 Photocatalytic oxidation of organic pollutants on titania-clay composites Chemosphere 70 538542.CrossRefGoogle ScholarPubMed
Mogyorosi, K. Farkas, A. Dekany, I. Ilisz, I. and Dombi, A., 2002 TiO2-based photocatalytic degradation of 2-chlorophenol adsorbed on hydrophobic clay Environmental Science & Technology 36 36183624.CrossRefGoogle ScholarPubMed
Murad, E., 1997 Identification of minor amounts of anatase in kaolins by Raman spectroscopy American Mineralogist 82 203206.CrossRefGoogle Scholar
Ohsaka, T. Izumi, F. and Fujiki, Y., 1978 Raman-spectrum of anatase, TiO2 Journal of Raman Spectroscopy 7 321324.CrossRefGoogle Scholar
Rieder, M. Klementova, M. and Szatmary, L., 2010 High-temperature growth of anatase on kaolinite substrate Proceedings of the Royal Society A — Mathematical, Physical and Engineering Sciences 466 721730.CrossRefGoogle Scholar
Robin, V. Petit, S. Beaufort, D. and Prêt, D., 2013 Mapping kaolinite and dickite in sandstone thin sections using infrared microscopy Clays and Clay Minerals 61 141151.CrossRefGoogle Scholar
Sahel, K. Perol, N. Chermette, H. Bordes, C. Derriche, Z. and Guillard, C., 2007 Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B — Isotherm of adsorption, kinetic of decolorization and mineralization Applied Catalysis B — Environmental 77 100109.CrossRefGoogle Scholar
Saikia, B.J. and Parthasarathy, G., 2010 Fourier Transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, northeastern India Journal of Modern Physics 1 206210.CrossRefGoogle Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouquerol, J. and Siemieniewska, T., 1985 Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984) Pure and Applied Chemistry 57 603619.CrossRefGoogle Scholar
Song, S. Xu, L. He, Z. and Chen, J., 2007 Mechanism of the photocatalytic degradation of CI reactive black 5 at pH 12.0 using SrTiO3/CeO2 as the catalyst Environmental Science & Technology 41 58465853.CrossRefGoogle ScholarPubMed
Stengl, V. Subrt, J. Bakardjieva, S. Kalendova, A. and Kalenda, P., 2003 The preparation and characteristics of pigments based on mica coated with metal oxides Dyes and Pigments 58 239244.CrossRefGoogle Scholar
Stengl, V. Subrt, J. Bezdicka, P. Marikova, M. and Bakardjieva, S., 2003 Homogeneous precipitation with urea — An easy process for making spherical hydrous metal oxides Solid State Chemistry V 90-91 121126.Google Scholar
Stengl, V. and Matys Grygar, T., 2011.The simplest way to iodine-doped anatase for photocatalysts activated by visible light International Journal of PhotoenergyCrossRefGoogle Scholar
Stengl, V. Houskova, V. Bakardjieva, S. Murafa, N. and Havlin, V., 2008 Optically Transparent Titanium Dioxide Particles Incorporated in Poly(hydroxyethyl methacrylate) Thin Layers Journal of Physical Chemistry C 112 1997919985.CrossRefGoogle Scholar
Stengl, V. Bakardjieva, S. Murafa, N. and Houskova, V., 2008 Hydrothermal synthesis of titania powders and their photocatalytic properties Ceramics-Silikaty 52 278290.Google Scholar
Stengl, V. Bakardjieva, S. and Murafa, N., 2009 Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles Materials Chemistry and Physics 114 217226.CrossRefGoogle Scholar
Trentler, T.J. Denler, T.E. Bertone, J.F. Agrawal, A. and Colvin, V.L., 1999 Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions Journal of the American Chemical Society 121 16131614.CrossRefGoogle Scholar
Vimonses, V. Chong, M.N. and Jin, B., 2010 Evaluation of the physical properties and photodegradation ability of titania nanocrystalline impregnated onto modified kaolin Microporous and Mesoporous Materials 132 201209.CrossRefGoogle Scholar
Wang, C.C. and Ying, J.Y., 1999 Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals Chemistry of Materials 11 31133120.CrossRefGoogle Scholar
Yamanaka, S. Nishihara, T. Hattori, M. and Suzuki, Y., 1987 Preparation and properties of titania pillared clay Materials Chemistry and Physics 17 87101.CrossRefGoogle Scholar
Yang, X. Zhu, H. Liu, J. Gao, X. Martens, W.N. Frost, R.L. Shen, Y. and Yuan, Z., 2008 A mesoporous structure for efficient photocatalysts: Anatase nanocrystals attached to leached clay layers Microporous and Mesoporous Materials 112 3244.CrossRefGoogle Scholar
Zhao, W.R. Shi, H.X. and Wang, D.H., 2004 Ozonation of cationic Red X-GRL in aqueous solution: degradation and mechanism Chemosphere 57 11891199.CrossRefGoogle ScholarPubMed