Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T04:56:41.116Z Has data issue: false hasContentIssue false

Fault-Hosted Palygorskite from the Serrata De Níjar Deformation Zone (SE Spain)

Published online by Cambridge University Press:  01 January 2024

E. García-Romero*
Affiliation:
Departement de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, Madrid, Spain
M. Suárez
Affiliation:
Departamento de Geología, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain
R. Oyarzun
Affiliation:
Departement de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, Madrid, Spain
J. A. López-García
Affiliation:
Departement de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, Madrid, Spain
M. Regueiro
Affiliation:
Departement de Cristalografía y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense, Madrid, Spain Instituto Geológico y Minero de España, Ríos Rosas, 23, 28003 Madrid, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Palygorskite fibers growing along fault planes in the outcrops of a large fault zone in SE Spain (Carboneras Fault Zone: CFZ; Serrata de Níjar) were studied by X-ray diffraction, scanning electron microscopy-energy dispersive X-ray analysis, and transmission electron microscopy-analytical electron microscopy. The structural formulae, calculated per half unit-cell, is: Si7.95Al0.05O20(Al1.93Fe0.08Mg1.92) (OH)2(OH2)4Na0.09K0.01Ca0.034(H2O). The samples have minor tetrahedral substitutions, with Mg/Al ratios close to one, and contain very small amounts of Fe3+. The number of octahedral cations per half unit-cell is 3.93. The fault-hosted palygorskite shows macroscopic ductile features including incipient foliation. Based on field and laboratory observations, as well as on regional geological evidence indicating the existence of widespread hydrothermal processes along the Serrata de Níjar and surrounding areas, we suggest that palygorskite may have formed during ongoing deformation in the CFZ, as a precipitate from Mg-rich hydrothermal fluids.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Bowles, F. Angino, A. Hosterman, W. and Galle, K., (1971) Precipitation of deep-sea palygorskite and sepiolite Earth and Planetary Science Letters 11 324332 10.1016/0012-821X(71)90187-7.CrossRefGoogle Scholar
Chisholm, J.E., (1990) An X-ray powder diffraction study of palygorskite The Canadian Mineralogist 28 329339.Google Scholar
Chisholm, J.E., (1992) Powder-diffraction patterns and structural models for palygorskite The Canadian Mineralogist 30 6173.Google Scholar
Davis, G.H. and Reynolds, S.J., (1996) Structural Geology of Rocks and Regions New York John Wiley and Sons 776 pp.Google Scholar
Doblas, M. and Oyarzun, R., (1989) Neogene extensional collapse in the western Mediterranean (Betic-Rif Alpine orogenic belt): implications for the genesis of the Gibraltar Arc and magmatic activity Geology 17 430433 10.1130/0091-7613(1989)017<0430:NECITW>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Doblas, M. Mahecha, V. Hoyos, M. and López Ruiz, J., (1997) Slickenside and fault surface kinematic indicators on active normal faults of the Alpine Betic cordilleras, Granada, southern Spain Journal of Structural Geology 19 159170 10.1016/S0191-8141(96)00086-7.CrossRefGoogle Scholar
Eaton, P.C. and Setterfield, T.N., (1993) The relationship between epithermal and porphyry hydrothermal systems within the Tavua Caldera, Fiji Economic Geology 88 10531083 10.2113/gsecongeo.88.5.1053.CrossRefGoogle Scholar
Furbish, W.J. and Sando, T.W., (1976) Palygorskite by direct precipitation from a hydrothermal solution Clay Minerals 11 147151 10.1180/claymin.1976.011.2.06.CrossRefGoogle Scholar
Gibbs, A.E. Hein, J.R. Lewis, S.D. and McCulloch, D.S., (1993) Hydrothermal palygorskite and ferromanganese mineralization at a central California margin fracture zone Marine Geology 11 4765 10.1016/0025-3227(93)90074-6.CrossRefGoogle Scholar
Haji-Vassiliou, A. and Puffer, J.H., (1975) A macrocrystalline attapulgite-palygorskite occurrence in calcite veins American Mineralogist 60 328330.Google Scholar
Heald, P. Foley, N.K. and Hayba, D.O., (1987) Comparative anatomy of volcanic-hosted epithermal deposits: acid-sulfate and adularia-sericite types Economic Geology 82 26 10.2113/gsecongeo.82.1.1.CrossRefGoogle Scholar
Hemley, J.J. and Jones, W.R., (1964) Chemical aspects of hydrothermal alteration with emphasis on hydrogen metasomatism Economic Geology 59 538567 10.2113/gsecongeo.59.4.538.CrossRefGoogle Scholar
Hemley, J.J. Hostetier, P.B. Gude, A.J. and Mountjoy, W.T., (1969) Some stability relations of alunite Economic Geology 64 599612 10.2113/gsecongeo.64.6.599.CrossRefGoogle Scholar
Huibregtse, P. Alebeek, H.V. Mattijs, Z. and Biermann, C., (1998) Palaeostress analysis of the northern Nijar and southern Vera basins: constraints for the Neogene displacement history of major strike-slip faults in the Betic Cordilleras, SE Spain Tectonophysics 300 79101 10.1016/S0040-1951(98)00235-2.CrossRefGoogle Scholar
Imai, N. Otsuka, R., Singer, A. and Galán, E., (1984) Sepiolite and palygorskite in Japan Palygorskite-Sepiolite: Occurrence, Genesis and Uses Amsterdam Elsevier 211232.Google Scholar
Keller, J.V.A. Hall, S.H. and McClay, K.R., (1997) Shear fracture pattern and microstructural evolution in transpressional fault zones from field and laboratory studies Journal of Structural Geology 19 11731187 10.1016/S0191-8141(97)00042-4.CrossRefGoogle Scholar
Linares, J., (1985) The processes of bentonite formation in Cabo de Gata, Almería, Spain Mineralogica et Petrographica Acta 29A 1733.Google Scholar
López Galindo, A. and Sánchez Navas, A., (1989) Criterios morfológicos, cristalográficos y geoquímicos de diferenciación entre sepiolitas de origen sedimetario e hidrotermal Boletín de la Sociedad Española de Mineralogía 12 375384.Google Scholar
Montoya, J.W. and Hemley, J.J., (1975) Activity relations and stabilities in alkali feldspar and mica alteration reactions Economic Geology 70 577583 10.2113/gsecongeo.70.3.577.CrossRefGoogle Scholar
Murphy, W.M. and Helgeson, H.C., (1987) Thermodynamic and kinetic contraints on reaction rates among minerals and aqueous solutions. III. Activated complexes and the pH-dependence of the rates of feldspar, pyroxene, wollastonite, and olivine hydrolysis Geochimica et Cosmochimica Acta 51 31373153 10.1016/0016-7037(87)90124-4.CrossRefGoogle Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) The chemical constitution of clays Chemistry of Clays and Clay Minerals London Mineralogical Society 1128.Google Scholar
Oyarzun, R. Marquez, A. Ortega, L. Lunar, R. and Oyarzún, J., (1995) A late Miocene metallogenic province in southeast Spain: atypical Andean-type processes on a smaller scale Transactions of the Institution of Mining and Metallurgy 104 197202.Google Scholar
Passchier, C.W. and Trouw, R.A.J., (1998) Microtectonics Berlin Springer 10.1007/978-3-662-08734-3 289 pp.CrossRefGoogle Scholar
Platt, J.P. and Vissers, R.L.M., (1989) Extensional collapse of thickened continental lithosphere: a working hypothesis for the Alboran Sea and Gibraltar Arc Geology 17 540543 10.1130/0091-7613(1989)017<0540:ECOTCL>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Reyes, E. Caballero, E. Huertas, F. and Linares, J., (1987) Bentonite deposits from the Cabo de Gata region, Almería, SE Spain The Sixth Meeting of the European Clay Groups Seville, Spain Guide Book for Excursions 731.Google Scholar
Sibson, R.H., (1987) Earthquake rupturing as a hydrothermal mineralizing agent Geology 15 701704 10.1130/0091-7613(1987)15<701:ERAAMA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Sibson, R.H. and Nesbitt, B.E., (1990) Faulting and fluid flow Fluids in Tectonically Active Regimes of the Continental Crust Vancouver Short Course, Mineralogical Association of Canada 93132.Google Scholar
Vrolik, P. and van der Puijm, B.A., (1999) Clay gouge Journal of Structural Geology 21 10391048 10.1016/S0191-8141(99)00103-0.CrossRefGoogle Scholar