Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T17:39:16.477Z Has data issue: false hasContentIssue false

Far-Infrared Study of the Interlayer Torsional-Vibrational Mode of Mixed-Layer Illite/Smectites

Published online by Cambridge University Press:  28 February 2024

Paul A. Schroeder*
Affiliation:
Department of Geology and Geophysics, Yale University, P.O. Box 6666, New Haven, Connecticut 0651
*
1Present address: Department of Geology, The University of Georgia, Athens, Georgia 30602.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Investigation of mixed-layer illite/smectites with far-infrared (FIR) spectroscopy indicates the presence of torsional mode absorption bands associated with interlayer fixed-K sites. By contrast, hydrated montmorillonitic interlayer cation sites are transparent in the far IR. The presence or absence of bands for interlayer cation sites appears to be related to both the magnitude and site of negative layer charge within the 2:1 layer structure. The bimodal nature of illite/smectite spectra leads to the suggestion that two different fixed-K environments occur within illite/smectite structures. These two environments are controlled by the composition of the octahedral sheet. The torsional modes at 112 and 89 cm-1 represent fixed-K sites influenced, respectively, by an Al-rich, high-charge dioctahedral layer and a heterogeneous Al-Fe-Mg-bearing, low-charge layer. A general trend of increasing absorption of the 112 cm-1 band, relative to the 89 cm-1 band, is observed in a typical diagenetic illite/smectite sequence of Miocene shales from the Gulf of Mexico sedimentary basin. The absorbance strength of both torsional bands is also seen to increase with increasing degree of illitization and the amount of fixed potassium in the illite/smectite. These observations are consistent with the concept of shales undergoing illitization during burial diagenesis by both the collapse of high-charge smectite layers to form illite layers (i.e., transformation) and the formation of new high-charge (-0.9) illite layers at the expense of smectite layers (i.e., dissolution/ neoformation).

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Ahn, J. H. and Buseck, P. R., 1990 Layer-stacking sequences and structural disorder in mixed-layer illite/smectite: Image simulations and HRTEM imaging Amer. Mineral 75 267275.Google Scholar
Altaner, S. P., Weiss, C. A. and Kirkpatrick, R. J., 1988 Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals Nature 331 699702 10.1038/331699a0.CrossRefGoogle Scholar
Bailey, S. W. and Bailey, S. W., 1984 Crystal chemistry of the true micas: in Micas 13, Reviews in Mineralogy Mineral. Soc. Amer. 1360.CrossRefGoogle Scholar
Bleam, W. F., 1990 Electrostatic potential at the basal (001) surface of talc and pyrophyllite as related to tetrahedral sheet distorsions Clays & Clay Minerals 38 522526 10.1346/CCMN.1990.0380509.CrossRefGoogle Scholar
Bodine, M. W., 1987 CLAYFORM: A Fortran 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula Computers and Geosciences 13 7788 10.1016/0098-3004(87)90025-2.CrossRefGoogle Scholar
Chung, F. H., 1975 Quantitative interpretation of X-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities Jour. Appl. Cryst 8 1719 10.1107/S0021889875009454.CrossRefGoogle Scholar
de la Calle, C., Suquet, H. and Bailey, S. W., 1988 Vermiculite: in Hydrous Phyllosilicates 19, Reviews in Mineralogy Mineral. Soc. Amer. 455496.CrossRefGoogle Scholar
Earley, J. W., Osthaus, B. B. and Milne, I. H., 1953 Purification and properties of montmorillonite Amer. Mineral 38 707724.Google Scholar
Eberl, D. D. and Srodon, J., 1988 Ostwald ripening and interparticle diffraction effects for illite crystals Amer. Mineral 73 13351345.Google Scholar
Farmer, V. C. and Velde, B., 1973 Effects of structural order and disorder on the infrared spectra of brittle micas Mineral. Mag 39 282288 10.1180/minmag.1973.039.303.04.CrossRefGoogle Scholar
Fripiat, J. J. and Fripiat, J. J., 1982 Application of far infrared spectroscopy to the study of clay minerals and zeolite Advanced Techniques for Clay Mineral Analysis New York Elsevier 191210.Google Scholar
Garrels, R. M., 1984 Montmorillonite/illite stability diagrams Clays & Clay Minerals 32 161166 10.1346/CCMN.1984.0320301.CrossRefGoogle Scholar
Giese, R. F., 1971 Hydroxyl orientation in muscovite as indicated by electrostatic energy calculations Science 172 263264 10.1126/science.172.3980.263.CrossRefGoogle ScholarPubMed
Grupta, H. C., Mahanti, S. D. and Solin, S. A., 1988 Torsional mode frequency and elastic anisotropy in alkali vermiculites Phys. Chem. Mineral 16 291294.Google Scholar
Gulson, B. L. and Lovering, J. F., 1968 Rock analysis using electron probe Geochim. Cosmochim. Acta 32 119122 10.1016/0016-7037(68)90092-6.CrossRefGoogle Scholar
Hathaway, J. C., 1956 Procedure for clay mineral analysis used in the sedimentary petrology laboratory of the U.S. Geological Survey Clay Miner. Bull 3 813 10.1180/claymin.1956.003.15.05.CrossRefGoogle Scholar
Hofmeister, A. M., Xu, J., Mao, H. K., Bell, P. M. and Hoering, T. C., 1989 Thermodynamics of Fe-Mg olivines at mantle pressures: Mid and far-infrared spectroscopy at high pressure Amer. Mineral 74 281306.Google Scholar
Hower, J., Elsinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Hower, J. and Mowatt, T. C., 1966 The mineralogy of illites and mixed-layer illite/montmorillonite Amer. Mineral 51 825854.Google Scholar
Huff, H. D., Whitman, J. A. and Curtis, C. D., 1988 Investigation of a K-bentonite by X-ray powder diffraction and analytical transmission electron microscopy Clays & Clay Minerals 36 8393 10.1346/CCMN.1988.0360111.CrossRefGoogle Scholar
Inoue, A., Kohyama, N., Kitagawa, R. and Watanabe, T., 1987 Chemical and morphological evidence for the conversion of smectite to illite Clays & Clay Minerals 35 111120 10.1346/CCMN.1987.0350203.CrossRefGoogle Scholar
Juo, A S R and White, J. L., 1969 Orientation of the dipole moments of hydroxyl groups in oxidized and unoxidized biotite Science 165 804805 10.1126/science.165.3895.804.CrossRefGoogle ScholarPubMed
Kirkpatrick, R. J., Oestrike, R., Weiss, C A W Jr. Smith, K. A. and Oldfield, E., 1986 High-resolution 27A1 and 29Si NMR spectroscopy of glasses and crystals along the join CaMgSi2O6-CaAl2SiO6 Amer. Mineral 71 705711.Google Scholar
Laperche, V., 1991 Etude de l’état et de la localisation des cations compensateurs dans les phyllosilicates: Par des methodes spectrometriques .Google Scholar
Laperche, V. and Prost, R., 1989 Far infrared study of compensating cations in clays Abstracts with program .Google Scholar
Laperche, V. and Prost, R., 1991 Assignment of the far-infrared absorption bands of K in micas Clays & Clay Minerals 39 281289 10.1346/CCMN.1991.0390308.CrossRefGoogle Scholar
Lasaga, A. C., Hochella, M. F. and White, A. F., 1990 Atomic treatment of mineral-water surface reactions Mineral-water Interface Geochemistry 23, Reviews in Mineralogy Washington, D.C. Mineral. Soc. Amer. 1785 10.1515/9781501509131-006.CrossRefGoogle Scholar
MacEwan, D MC and Ruiz-Amil, A., 1975 Interstratified Clay Minerals Soil Components 2 New York Springer-Verlag 265334 10.1007/978-3-642-65917-1_8.CrossRefGoogle Scholar
MacEwan, D M C Wilson, M. J., Brindley, G. W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals: in Crystal Structures of Clay Minerals and Their X-ray Identification Mineral. Soc. 197248.CrossRefGoogle Scholar
Moore, D. E. and Reynolds, R. C., 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford Univ. Press.Google Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interstratified XRD characteristics of physical mixtures of elementary clay particles Clay Miner 19 6176.CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interparticle diffraction: A new concept for interstratified clays Clay Miner 19 757769 10.1180/claymin.1984.019.5.06.CrossRefGoogle Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1984 Interstratified clays as fundamental particles Science 225 923925 10.1126/science.225.4665.923.CrossRefGoogle ScholarPubMed
Prost, R. and Laperche, V., 1990 Far-infrared study of potassium in micas Clays & Clay Minerals 38 351355 10.1346/CCMN.1990.0380403.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Mineral. Soc 249303.CrossRefGoogle Scholar
Reynolds, R. C., (1985) NEWMOD, a Computer Program for the Calculation of Basal Diffraction Intensities of Mixed-layered Clay Minerals: R. C. Reynolds, 8 Brook Rd., Hanover, New Hampshire 03755.Google Scholar
Ruttenberg, K. C., 1990 Diagenesis and burial of phosphorus in marine sediments .Google Scholar
Sayin, M. and von Reichenbach, H. G., 1978 Infrared spectra of muscovites as affected by chemical composition, heating and particle size Clay Miner 13 241253 10.1180/claymin.1978.013.3.01.CrossRefGoogle Scholar
Schroeder, P. A., 1989 Phyllosilicate sample mounting for far infrared absorption spectroscopy Abstracts with program .Google Scholar
Schroeder, P. A., 1990 Far infrared, X-ray diffraction and chemical investigation of potassium micas Amer. Mineral 75 983991.Google Scholar
Smith, A. L., KothofF, I. M., Elving, P. J. and Sandell, E. B., 1965 Infrared spectroscopy Treatise on Analytical Chemistry: Part 1, Theory and Practice 6 New York John Wiley Interscience 35353744.Google Scholar
Smith, D. K., Johnson, G. G. Jr. Scheible, A., Wims, A. M., Johnson, J. L. and Ulimann, G., 1987 Quantitative X-ray powder diffraction method using the full diffraction pattern Powder Diffraction 2 7377 10.1017/S0885715600012409.CrossRefGoogle Scholar
Srodon, J., 1980 Precise identification of illite/smectite interstratification by X-ray powder diffraction Clays & Clay Minerals 28 401411 10.1346/CCMN.1980.0280601.CrossRefGoogle Scholar
Srodon, J., Anreoli, C., Elass, F. and Robert, M., 1990 Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rock Clays & Clay Minerals 38 373379 10.1346/CCMN.1990.0380406.CrossRefGoogle Scholar
Srodon, J., Morgan, D. J., Eslinger, E. V., Eberl, D. D. and Karlinger, M. R., 1986 Chemistry of illite/smectite and end-member illite Clays & Clay Minerals 34 368378 10.1346/CCMN.1986.0340403.CrossRefGoogle Scholar
van Olphen, H. and Fripiat, J. J., 1979 Data Handbook for Clay Minerals and other Non-metallic Minerals Oxford Pergamon Press.Google Scholar
Velde, B., 1983 Infrared OH-stretch bands in potassic micas, talcs and saponites; influence of electron configuration and site of charge compensation Amer. Mineral 68 11691173.Google Scholar
Velde, B. and Couty, R., 1985 Far infrared spectra of hydrous layer silicates Phys. Chem. Mineral 12 347352 10.1007/BF00654345.CrossRefGoogle Scholar
Weiss, C. A., Altaner, S. P. and Kirkpatrick, R. J., 1987 High-resolution 29Si NMR spectroscopy of 2:1 layer silicates: Correlations among chemical shifts, structural distortions, and chemical variations Amer. Mineral 72 935942.Google Scholar
Whitney, G. and Northrop, H. R., 1988 Experimental investigation of the smectite to illite reaction: Dual reaction mechanism and oxygen-isotope systematics Amer. Mineral 73 7790.Google Scholar
Wittkop, R. and O’Day, M., 1973 Whole rock chemical analysis using the electron microprobe Anal. Lett 6 10211028 10.1080/00032717308058181.CrossRefGoogle Scholar
Woessner, D. E., 1989 Characterization of clay minerals by 27A1 nuclear magnetic resonance spectroscopy Amer. Mineral 74 203215.Google Scholar