Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T07:00:23.713Z Has data issue: false hasContentIssue false

Experimental Study of the Stability and Phase Relations of Clays at High Temperature in a Thermal Gradient

Published online by Cambridge University Press:  01 January 2024

O. Vidal*
Affiliation:
CNRS, Université Joseph Fourier, Grenoble, Isterre, 1381 rue de la piscine, BP 53, 38041 Grenoble Cedex, France
A. Baldeyrou
Affiliation:
CNRS, Université de Strasbourg/EOST, LHYGES, 1 rue Blessig, 67084 Strasbourg Cedex, France
D. Beaufort
Affiliation:
CNRS, Université Poitiers, Hydrasa, 40 avenue du recteur Pineau, 86022 Poitiers Cedex, France
B. Fritz
Affiliation:
CNRS, Université de Strasbourg/EOST, LHYGES, 1 rue Blessig, 67084 Strasbourg Cedex, France
N. Geoffroy
Affiliation:
CNRS, Université Joseph Fourier, Grenoble, Isterre, 1381 rue de la piscine, BP 53, 38041 Grenoble Cedex, France
B. Lanson
Affiliation:
CNRS, Université Joseph Fourier, Grenoble, Isterre, 1381 rue de la piscine, BP 53, 38041 Grenoble Cedex, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clays are involved in a variety of natural and managed processes, and calculation of their stability conditions is important. Such calculations are still fraught with large uncertainties owing to the lack of experimental constraints on the thermodynamic properties of clays, and bracketing of equilibrium reactions at low temperature is barely possible. Experiments aimed at studying the thermal stabilities of, and composition-temperature relations among, smectite, illite, kaolinite, pyrophyllite, mica, and chlorite at different levels of SiO2, K2O, MgO, and Al2O3 species in solution were conducted under a strong thermal gradient in the simple K2O-Al2O3-SiO2-H2O (KASH), MgO-Al2O3-SiO2-H2O (MASH), and KMASH systems. The crystallization series observed in the different experiments match to some degree those observed in active geothermal systems where clay minerals precipitate from oversaturated solutions. Smectite and/or ordered mixed-layer materials, smectite-donbassite, or possibly pyrophyllite-donbassite were observed to crystallize in both KASH and MASH experiments. Similar crystallization sequences and clay composition variations with temperature were observed in most cases when the relative positions of the starting solids were switched. The experimental results were used to refine the thermodynamic properties of K- and Mg-smectite. Stability diagrams calculated by energy minimization and activityactivity diagrams are consistent with the experimental mineral variations, suggesting that smectite is thermodynamically stable at temperatures as high as 300°C in the presence of diluted water and quartz and K-feldspar-free systems.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Ahn, J.H. Burt, D.M. and Buseck, P.R., 1988 Alteration of andalusite to sheet silicates in a pegmatite American Mineralogist 73 559567.Google Scholar
Aja, S.U., 1991 Illite equilibria in solutions 3. A reinterpretation of the data of Sass et al. (1987). Geochimica et Cosmochimica Acta 55 34313435.CrossRefGoogle Scholar
Baldeyrou, A. Vidal, O. and Fritz, B., 2003 Experimental study of phase transformations in a thermal gradient: application to the Soultz-sous-Forets granite (France) Comptes Rendus Geoscience 335 371380.CrossRefGoogle Scholar
Bartier, D. Ledesert, B. Clauer, N. Meunier, A. Liewig, N. Morvan, G. and Addad, A., 2008 Hydrothermal alteration of the Soultz-sous-Forets granite (Hot Fractured Rock geothermal exchanger) into a tosudite and illite assemblage European Journal of Mineralogy 20 131142.10.1127/0935-1221/2008/0020-1787CrossRefGoogle Scholar
Beaufort, D. Patrier, P. Meunier, A. and Ottaviani, M.M., 1992 Chemical variations in assemblages including epidote and or chlorite in the fossil hydrothermal system of Saint Martin (Lesser Antilles) Journal of Volcanology and Geothermal Research 51 95114.10.1016/0377-0273(92)90062-ICrossRefGoogle Scholar
Beaufort, D. Papapanagiotou, P. Fujimoto, K. Patrier, P. Kasai, K., Kharaka, Y.K. and Chudaev, O.V., 1995 High temperature smectites in active geothermal systems Water-Rock Interaction Rotterdam Balkema 493496.Google Scholar
Beaufort, D. Papapanagiotou, P. Patrier, P. and Traineau, H., 1995 The I-S and C-S mixed layers in active geothermic fields - can they be compared to those in the diagenetic series Bulletin Des Centres De Recherches Exploration- Production Elf Aquitaine 19 267291.Google Scholar
Beaufort, D. Berger, G. Lacharpagne, J.C. and Meunier, A., 2001 An experimental alteration of montmorillonite to a di + trioctahedral smectite assemblage at 100 and 200°C Clay Minerals 36 211225.CrossRefGoogle Scholar
Beaufort, D. Patrier, P. Laverret, E. Bruneton, P. and Mondy, J., 2005 Clay alteration associated with Proterozoic unconformity-type uranium deposits in the East Alligator Rivers uranium field, Northern Territory, Australia Economic Geology 100 515536.10.2113/gsecongeo.100.3.515CrossRefGoogle Scholar
Bentabol, M. Ruiz Cruz, M.D. Huertas, F.J. and Linares, J., 2004 Hydrothermal transformations of kaolinite at 200 and 250°C in the systems Li2O-Na2O-MgO-Al2O3-SiO2-H2OHCl and Li2O-K2O-MgO-Al2O3-SiO2-H2O-HCl Clay Minerals 39 281299.CrossRefGoogle Scholar
Berger, G. Schott, J. and Loubet, M., 1987 Fundamental processes controlling the 1st stage of alteration of a basalt glass by seawater - an experimental study between 200°C and 320°C Earth and Planetary Science Letters 84 431445.CrossRefGoogle Scholar
Berman, R.G., 1988 Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeOFe2O3-Al2O3-SiO2-TiO2-H2O-CO2 Journal of Petrology 29 445522.CrossRefGoogle Scholar
Berman, R.G., 1991 Thermobarometry using multi-equilibrium calculations - a new technique, with petrological applications The Canadian Mineralogist 29 833855.Google Scholar
Berman, R.G. and Brown, T.H., 1985 Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 - representation, estimation, and high-temperature extrapolation Contributions to Mineralogy and Petrology 89 168183.CrossRefGoogle Scholar
Bettison, L.A. and Schiffman, P., 1988 Compositional and structural variations of phyllosilicates from the Point Sal ophiolite, California American Mineralogist 73 6276.Google Scholar
Billault, V. Beaufort, D. Patrier, P. and Petit, S., 2002 Crystal chemistry of Fe-sudoites from uranium deposits in the Athabasca basin (Saskatchewan, Canada) Clays and Clay Minerals 50 7081.CrossRefGoogle Scholar
Bouchet, A. Lajudie, A. Rassineux, F. Meunier, A. and Atabek, R., 1992 Mineralogy and kinetics of alteration of a mixed-layer kaolinite/smectite in nuclear waste disposal simulation experiment (Stripa site, Sweden) Applied Clay Science 7 113123.CrossRefGoogle Scholar
Chatterjee, N.D., 1973 Low-temperature compatibility relations of assemblage quartz-paragonite and thermodynamic status of phase rectorite Contributions to Mineralogy and Petrology 42 259271.CrossRefGoogle Scholar
Cliff, G. and Lorimer, G.W., 1975 Quantitative analysis of thin specimens Journal of Microscopy-Oxford 103 203207.10.1111/j.1365-2818.1975.tb03895.xCrossRefGoogle Scholar
Creach, M. Meunier, A. and Beaufort, D., 1986 Tosudite crystallization in the kaolinized granitic cupola of Montebras, Creuse, France Clay Minerals 21 225230.CrossRefGoogle Scholar
Daniels, E.J. and Altaner, S.P., 1990 Clay mineral authigenesis in coal and shale from the Anthracite region, Pennsylvania American Mineralogist 75 825839.Google Scholar
de Capitani, C. and Petrakakis, K., 2010 The computation of equilibrium assemblage diagrams with Theriak/Domino software American Mineralogist 95 10061016.CrossRefGoogle Scholar
Dubacq, B. Vidal, O. and De Andrade, V., 2010 Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates Contributions to Mineralogy and Petrology 159 159174.10.1007/s00410-009-0421-6CrossRefGoogle Scholar
Dubacq, B. Vidal, O. and Lewin, E., 2011 Atomistic investigation of the pyrophyllitic substitution and implications on clay stability American Mineralogist 96 241249.CrossRefGoogle Scholar
Ferrage, E. Vidal, O. Mosser-Ruck, R. Cathelineau, M. and Cuadros, J., 2011 A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy American Mineralogist 96 207223.CrossRefGoogle Scholar
Franceschelli, M. Mellini, M. Memmi, I. and Ricci, C.A., 1989 Sudoite, a rock-forming mineral in Verrucano of the northern Apennines (Italy) and the sudoite-chloritoidpyrophyllite assemblage in prograde metamorphism Contributions to Mineralogy and Petrology 101 274279.CrossRefGoogle Scholar
Fransolet, A.M. and Schreyer, W., 1984 Sudoite, di/trioctahedral chlorite - a stable low-temperature phase in the system MgO-Al2O3-SiO2-H2O Contributions to Mineralogy and Petrology 86 409417.CrossRefGoogle Scholar
Fritz, B. Clement, A. Amal, Y. and Noguera, C., 2009 Simulation of the nucleation and growth of simple clay minerals in weathering processes: The NANOKIN code Geochimica et Cosmochimica Acta 73 13401358.10.1016/j.gca.2008.11.043CrossRefGoogle Scholar
Fritz, B. Jacquot, E. Jacquemont, B. Baldeyrou-Bailly, A. Rosener, M. and Vidal, O., 2010 Geochemical modelling of fluid-rock interactions in the context of the Soultzsous-Forets geothermal system Comptes Rendus Geoscience 342 653667.CrossRefGoogle Scholar
Fulignati, P. Malfitano, G. and Sbrana, A., 1997 The Pantelleria caldera geothermal system: Data from the hydrothermal minerals Journal of Volcanology and Geothermal Research 75 251270.CrossRefGoogle Scholar
Gianelli, G. Mekuria, N. Battaglia, S. Chersicla, A. Garofalo, P. Ruggieri, G. Manganelli, M. and Gabregziabher, Z., 1998 Water-rock interaction and hydrothermal mineral equilibria in the Tendaho geothermal system Journal of Volcanology and Geothermal Research 86 253276.CrossRefGoogle Scholar
Goffé, B. Murphy, W.M. and Lagache, M., 1987 Experimental transport of Si, Al and Mg in hydrothermal solutions - an application to vein mineralization during high-pressure, low-temperature metamorphism in the French Alps Contributions to Mineralogy and Petrology 97 438450.10.1007/BF00375322CrossRefGoogle Scholar
Grauby, O. Petit, S. Decarreau, A. and Baronnet, A., 1993 The beidellite-saponite series - an experimental approach European Journal of Mineralogy 5 623635.CrossRefGoogle Scholar
Guggenheim, S. Adams, J.M. Bain, D.C. Bergaya, F. Brigatti, M.F. Drits, V.A. Formoso, M.L.L. Galán, E. Kogure, T. and Stanjek, H., 2006 Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006 Clays and Clay Minerals 54 761772.10.1346/CCMN.2006.0540610CrossRefGoogle Scholar
Hajash, A., 1975 Hydrothermal processes along mid-ocean ridges - experimental investigation Contributions to Mineralogy and Petrology 53 205226.CrossRefGoogle Scholar
Hamilton, D.L. and Henderson, C.M.B., 1968 Preparation of silicate compositions by a gelling method Mineralogical Magazine 36 832838.CrossRefGoogle Scholar
Harvey, C.C. and Browne, P.R.L., 1991 Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand Clays and Clay Minerals 39 614621.CrossRefGoogle Scholar
Henry, C. Boisson, J.-Y. Bouchet, A. and Meunier, A., 2007 Thermally induced mineral and chemical transformations in calcareous mudstones around a basaltic dyke (Perthus Pass, southern Massif Central, France). Possible implications as a natural analogue of nuclear waste disposal Clay Minerals 42 213231.CrossRefGoogle Scholar
Hillier, S., 1993 Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian basin, Scotland Clays and Clay Minerals 41 240259.CrossRefGoogle Scholar
Hillier, S. Wilson, M.J. and Merriman, R.J., 2006 Clay mineralogy of the Old Red Sandstone and Devonian sedimentary rocks of Wales, Scotland and England Clay Minerals 41 433471.CrossRefGoogle Scholar
Holland, T.J.B., 1989 Dependence of entropy on volume for silicate and oxide minerals - a review and a predictive model American Mineralogist 74 513.Google Scholar
Holland, T.J.B. and Powell, R., 2011 An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids Journal of Metamorphic Geology 29 333383.CrossRefGoogle Scholar
Ichikawa, A. and Shimoda, S., 1976 Tosudite from Hokuno mine, Hokuno, Gifu Prefecture, Japan Clays and Clay Minerals 24 142148.CrossRefGoogle Scholar
Inoue, A., Velde, B., 1995 Formation of clay minerals in hydrothermal environments Origin and Mineralogy of Clays Berlin Springer 268329.CrossRefGoogle Scholar
Inoue, A. Utada, M. and Wakita, K., 1992 Smectite to illite conversion in natural hydrothermal systems Applied Clay Science 7 131145.CrossRefGoogle Scholar
Inoue, A. Meunier, A. and Beaufort, D., 2004 Illite-smectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan Clays and Clay Minerals 52 6684.CrossRefGoogle Scholar
Ji, J.F. Browne, P.R.L. and Liu, Y.J., 1997 Occurrence of mixed-layer illite/smectite at temperature of 285°C in an active hydrothermal system and its significance Chinese Science Bulletin 42 318321.CrossRefGoogle Scholar
Kohler, E. Parra, T. and Vidal, O., 2009 Clayey cap-rock behavior in H2O-CO2 media at low pressure and temperature conditions: an experimental approach Clays and Clay Minerals 57 616637.CrossRefGoogle Scholar
Mas, A. Guisseau, D. Mas, P.P. Beaufort, D. Genter, A. Sanjuan, B. and Girard, J.P., 2006 Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe) Journal of Volcanology and Geothermal Research 158 380400.CrossRefGoogle Scholar
Merceron, T. Inoue, A. Bouchet, A. and Meunier, A., 1988 Lithium-bearing donbassite and tosudite from Echassieres, Massif Central, France Clays and Clay Minerals 36 3946.CrossRefGoogle Scholar
Merceron, T. Vieillard, P. Fouillac, A.M. and Meunier, A., 1992 Hydrothermal alterations in the Echassieres granitic cupola (Massif Central, France) Contributions to Mineralogy and Petrology 112 279292.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr, 1997 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford, UK Oxford University Press 378.Google Scholar
Morrison, S.J. and Parry, W.T., 1986 Dioctahedral corrensite from Permian red beds, Lisbon Valley, Utah Clays and Clay Minerals 34 613624.CrossRefGoogle Scholar
Mottl, M.J. and Holland, H.D., 1978 Chemical exchange during hydrothermal alteration of basalt by seawater - I Experimental results for major and minor components of seawater. Geochimica et Cosmochimica Acta 42 11031115.CrossRefGoogle Scholar
Noguera, C. Fritz, B. Clement, A. and Amal, Y., 2010 Simulation of the nucleation and growth of binary solid solutions in aqueous solutions Chemical Geology 269 8999.CrossRefGoogle Scholar
Percival, J.B. and Kodama, H., 1989 Sudoite from Cigare Lake, Saskatchewan The Canadian Mineralogist 27 633641.Google Scholar
Poinssot, C. Goffé, B. Magonthier, M.C. and Toulhoat, P., 1996 Hydrothermal alteration of a simulated nuclear waste glass: Effects of a thermal gradient and of a chemical barrier European Journal of Mineralogy 8 533548.CrossRefGoogle Scholar
Pozo, C. Jullien, M. Poinssot, C., McKinley, I.G. and McCombie, C., 1998 Evolution of an engineered barrier under thermal gradient during the Stripa experiments: Influence of the clay texture on the element transfers Scientific Basis for Nuclear Waste Management XXI 951952.CrossRefGoogle Scholar
Ransom, B. and Helgeson, H.C., 1994 Estimation of the standard molal heat capacities, entropies, and volumes of 2/1-clay-minerals Geochimica et Cosmochimica Acta 58 45374547.CrossRefGoogle Scholar
Reyes, A.G., 1990 Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment Journal of Volcanology and Geothermal Research 43 279309.10.1016/0377-0273(90)90057-MCrossRefGoogle Scholar
Reyes, A.G. and Cardile, C.M., 1989 Characterization of clay scales forming in Philippine geothermal wells Geothermics 18 429446.CrossRefGoogle Scholar
Rigault, C. Patrier, P. and Beaufort, D., 2010 Clay minerals related to circulation of near neutral to weakly acidic fluids in active high energy geothermal systems Bulletin de la SociétéGéologique de France 181 337347.CrossRefGoogle Scholar
Roberson, H.E. Reynolds, R.C. Jr. and Jenkins, D.M., 1999 Hydrothermal synthesis of corrensite: A study of the transformation of saponite to corrensite Clays and Clay Minerals 47 212218.CrossRefGoogle Scholar
Robert, C. and Goffé, B., 1993 Zeolitization of basalts in subaqueous fresh-water settings: Field observations and experimental study Geochimica et Cosmochimica Acta 57 35973612.CrossRefGoogle Scholar
Rosenberg, P.E. Kittrick, J.A. and Aja, S.U., 1990 Mixedlayer illite smectite - a multiphase model American Mineralogist 75 11821185.Google Scholar
Schiffman, P. and Fridleifsson, G.O., 1991 The smectitechlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations Journal of Metamorphic Geology 9 679696.CrossRefGoogle Scholar
Shau, Y.H. and Peacor, D.R., 1992 Phyllosilicates in hydrothermally altered basalts from DSDP hole 504b, Leg-83 - a TEM and AEM study Contributions to Mineralogy and Petrology 112 119133.CrossRefGoogle Scholar
Simmons, S.F. Browne, P.R.L., Arehart, G.B. and Hulston, J.R., 1998 Illite, illite-smectite and smectite occurrences in the Broadlands-Ohaaki geothermal system and their implications for clay mineral geothermometry Water-Rock Interaction 9 Rotterdam Balkema 691694.Google Scholar
Tardy, Y. and Duplay, J., 1992 A method of estimating the Gibbs free energies of formation of hydrated and dehydrated clay minerals Geochimica et Cosmochimica Acta 56 30073029.CrossRefGoogle Scholar
Theye, T. Seidel, E. and Vidal, O., 1992 Carpholite, sudoite, and chloritoid in low-grade high-pressure metapelites from Crete and the Peloponnese, Greece European Journal of Mineralogy 4 487507.CrossRefGoogle Scholar
Velde, B., 1977 A proposed phase diagram for illite, expanding chlorite, corrensite and illite-montmorillonite mixed layered minerals Clays and Clay Minerals 25 264270.CrossRefGoogle Scholar
Vidal, O., 1997 Experimental study of the thermal stability of pyrophyllite, paragonite, and clays in a thermal gradient European Journal of Mineralogy 9 123140.10.1127/ejm/9/1/0123CrossRefGoogle Scholar
Vidal, O. and Dubacq, B., 2009 Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and H2O activity Geochimica et Cosmochimica Acta 73 65446564.CrossRefGoogle Scholar
Vidal, O. and Durin, L., 1999 Aluminium mass transfer and diffusion in water at 400-550°C, 2 kbar in the K2O-Al2O3-SiO2-H2O system driven by a thermal gradient or by a variation of temperature with time Mineralogical Magazine 63 633647.CrossRefGoogle Scholar
Vidal, O. and Theye, T., 1996 Petrology of Fe-Mg-carpholitebearing metasediments from NE Oman - Discussion Journal of Metamorphic Geology 14 381386.CrossRefGoogle Scholar
Vidal, O. Goffé, B. and Theye, T., 1992 Experimental study of the stability of sudoite and magnesiocarpholite and calculation of a new petrogenetic grid for the system FeOMgO-Al2O3-SiO2-H2O Journal of Metamorphic Geology 10 603614.CrossRefGoogle Scholar
Vidal, O. Magonthier, M.-C. Joanny, V. and Creach, M., 1995 Partitioning of La between solid and solution during the ageing of Si-Al-Fe-La-Ca gels under simulated nearfield conditions of nuclear waste disposal Applied Geochemistry 10 269284.CrossRefGoogle Scholar
Vidal, O. Parra, T. and Trotet, F., 2001 A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100 degrees to 600°C, 1 to 25 kb range American Journal of Science 301 557592.CrossRefGoogle Scholar
Vidal, O. Parra, T. and Vieillard, P., 2005 Thermodynamic properties of the Tschermak solid solution in Fe-chlorite: Application to natural examples and possible role of oxidation American Mineralogist 90 347358.CrossRefGoogle Scholar
Vidal, O. De Andrade, V. Lewin, E. Munoz, M. Parra, T. and Pascarelli, S., 2006 P-T-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping: application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan) Journal of Metamorphic Geology 24 669683.CrossRefGoogle Scholar
Wang, Y.F. and Xu, H.F., 2006 Geochemical chaos: Periodic and nonperiodic growth of mixed-layer phyllosilicates Geochimica et Cosmochimica Acta 70 19952005.CrossRefGoogle Scholar
Whitney, G., 1990 Role of water in the smectite-to-illite reaction Clays and Clay Minerals 38 343350.CrossRefGoogle Scholar
WoldeGabriel, G. and Goff, F., 1992 K/Ar dates of hydrothermal clays from core hole VC-2B, Valles Caldera, New Mexico and their relation to alteration in a large hydrothermal system Journal of Volcanology and Geothermal Research 50 207230.CrossRefGoogle Scholar
Worden, R.H. Morad, S., Worden, R.H. and Morad, S., 2003 Clay minerals in sandstones: Controls on formation, distribution and evolution Clay Mineral Cements in Sandstones Oxford, UK International Association of Sedimentologists Special Publication 34, Blackwell Publishing 341.Google Scholar
Yamada, H. and Nakazawa, H., 1993 Isothermal treatments of regularly interstratified montmorillonite-beidellite at hydrothermal conditions Clays and Clay Minerals 41 726730.CrossRefGoogle Scholar
Yamada, H. Yoshioka, K. Tamura, K. Fujii, K. and Nakazawa, H., 1999 Compositional gap in a dioctahedraltrioctahedral smectite system: Beidellite-saponite pseudobinary join Clays and Clay Minerals 47 803810.CrossRefGoogle Scholar