Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T17:40:50.909Z Has data issue: false hasContentIssue false

Experimental Evidence for Ca-Chloride Ion Pairs in the Interlayer of Montmorillonite. an XRD Profile Modeling Approach

Published online by Cambridge University Press:  01 January 2024

Eric Ferrage*
Affiliation:
Environmental Geochemistry Group, LGIT-Maison des GéoSciences, CNRS — Joseph Fourier University, P.O. Box 53, 38041 Grenoble Cedex 9, France ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
Christophe Tournassat
Affiliation:
ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France BRGM, 3 avenue Claude Guillemin, 45060 Orléans Cedex 2, France
Emmanuel Rinnert
Affiliation:
ANDRA, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France Laboratoire de Chimie Physique et Microbiologie pour l’Environnement, UMR 7564 CNRS-Université Henri Poincaré, 405 rue de Vandœuvre, 54600 Villers-Lès-Nancy, France
Laurent Charlet
Affiliation:
Environmental Geochemistry Group, LGIT-Maison des GéoSciences, CNRS — Joseph Fourier University, P.O. Box 53, 38041 Grenoble Cedex 9, France
Bruno Lanson
Affiliation:
Environmental Geochemistry Group, LGIT-Maison des GéoSciences, CNRS — Joseph Fourier University, P.O. Box 53, 38041 Grenoble Cedex 9, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Montmorillonite was equilibrated with high normality Cl solutions to assess the possible presence of MeCl+ ion pairs in smectite interlayers suggested by chemical modeling of cation exchange experimental studies. Structural modifications induced by the presence of such ion pairs, and more especially those related to smectite hydration properties, were characterized from the modeling of experimental X-ray diffraction (XRD) profiles. As compared to those obtained from samples prepared at low ionic strength, XRD patterns from samples equilibrated in high ionic strength CaCl2 solutions exhibited a small positional shift of 00l basal reflections indicating a greater layer thickness. The rationality of basal reflection positions is also improved and the width of these reflections is decreased. These qualitative modifications are related to the existence of a more homogeneous hydration state with the sole presence at 40% relative humidity (RH) of bi-hydrated smectite layers (2W layers) in high ionic strength samples. By contrast, layers with contrasting hydration states coexist in samples prepared at low ionic strength. The stability of this homogeneous 2W hydration state is also extended towards low RH values in the sample prepared at high ionic strength.

In addition, the intensity distribution is modified in samples prepared at high ionic strength as compared to those obtained at low ionic strength. In particular the relative intensity of the 002 reflection is strongly enhanced in the former samples. This modification arises from an increased electron density in the interlayer mid-plane of 2W layers which is best explained by the presence of cation-chloride ion pairs replacing the divalent cations occupying this structural position in low ionic strength samples. The increased amounts of interlayer species (ion pairs and H2O molecules), which are confirmed by nearinfrared diffuse reflectance spectroscopy results, and the larger size of CaCl+ pairs as compared to Ca2+ cations lead to a more stable layer thickness, probably as a result of decreased layer corrugation. Consistent results were obtained for Sr and Mg cations.

Type
Research Article
Copyright
Copyright © The Clay Minerals Society 2005

References

Ben Brahim, J. Armagan, N. Besson, G. and Tchoubar, C., (1983) X-ray diffraction studies on the arrangement of water molecules in a smectite. I. Two-water-layer Na-beidellite Journal of Applied Crystallography 16 264269 10.1107/S0021889883010353.CrossRefGoogle Scholar
Ben Brahim, J. Besson, G. and Tchoubar, C., (1984) Etude des profils des handes de diffraction X d’une beidellite-Na hydratée à deux couches d’eau. Détermination du mode d’empilement des feuillets et des sites occupés par l’eau Journal of Applied Crystallography 17 179188 10.1107/S0021889884011262.CrossRefGoogle Scholar
Bérend, I. Cases, J.M. François, M. Uriot, J.P. Michot, L.J. Masion, A. and Thomas, F., (1995) Mechanism of adsorption and desorption of water vapour by homoionic montmorillonites: 2. the Li+, Na+, K+, Rb+ and Cs+ exchanged forms Clays and Clay Minerals 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Bishop, J. Murad, E. and Dyar, M.D., (2002) The influence of octahedral and tetrahedral cation substitution on the structure of smectites and serpentines as observed through infrared spectroscopy Clay Minerals 37 361628.CrossRefGoogle Scholar
Bradley, W.F. Grim, R.E. and Clark, G.F., (1937) A study of the behavior of montmorillonite on wetting Zeitschrift fur Kristallographie 97 260270.Google Scholar
Bumeau, A. and Carteret, C., (2000) Near infrared and ah initio study of the vibrational modes of isolated silanol on silica Physical Chemistry Chemical Physics 2 32173226 10.1039/b002863k.Google Scholar
Bumeau, A. Barres, O. Gallas, J.P. and Lavalley, J.C., (1990) Comparative study of the surface hydroxyl groups of fumed and precipitated silicas. 2. Characterization by infrared spectroscopy of the interaction with water Langmuir 6 13641372 10.1021/la00098a008.Google Scholar
Cases, J.M. Bérend, I. François, M. Uriot, J.P. Michot, L.J. and Thomas, F., (1997) Mechanism of adsorption and desorption of water vapour by homoionic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms Clays and Clay Minerals 45 822 10.1346/CCMN.1997.0450102.CrossRefGoogle Scholar
Charlet, L. and Toumassat, C., (2005) Fe(II)-Na(I)-Ca(II) cation exchange on montmorillonite in chloride medium; evidence for preferential clay adsorption of chloride-metal ion pairs in seawater Aquatic Geochemistry 11 115137 10.1007/s10498-004-1166-5.CrossRefGoogle Scholar
Cuadros, J., (1997) Interlayer cation effects on the hydration state of smectite American Journal of Science 297 829841 10.2475/ajs.297.8.829.CrossRefGoogle Scholar
Di Leo, P. and Cuadros, J., (2003) Cd-113, H-l MAS NMR and FTIR analysis of Cd2+ adsorption on dioctahedral and trioctahedral smectite Clays and Clay Minerals 51 403414 10.1346/CCMN.2003.0510406.CrossRefGoogle Scholar
Di Leo, P. and O’Brien, P., (1999) Nuclear magnetic resonance (NMR) study of Cd2+ sorption on montmorillonite Clays and Clay Minerals 47 761768 10.1346/CCMN.1999.0470611.CrossRefGoogle Scholar
Dickens, B. and Brown, W.E., (1972) The crystal structure of CaKAsO4.8H2O Acta Crystallographica B28 30563065 10.1107/S0567740872007411.CrossRefGoogle Scholar
Drits, V.A. and Sakharov, B.A., (1976) X-ray structure analysis of mixed-layer minerals. Doklady Akademii Nauk SSSR .Google Scholar
Drits, V.A. and Tchoubar, C., (1990) X-ray diffraction by disordered lamellar structures: Theory and applications to microdivided silicates and carbons Berlin Springer-Verlag 10.1007/978-3-642-74802-8.CrossRefGoogle Scholar
Drits, V.A. Sakharov, B.A. Lindgreen, H. and Salyn, A., (1997) Sequential structure transformation of illite-smectite-vermiculite during diagenesis of Upper Jurassic shales from the North Sea and Denmark Clay Minerals 32 351371 10.1180/claymin.1997.032.3.03.CrossRefGoogle Scholar
Drits, V.A. Środoń, J. and Eherl, D.D., (1997) XRD measurement of mean crystallite thickness of illite and illite/smectite: reappraisal of the Kübler index and the Scherrer equation Clays and Clay Minerals 45 461475 10.1346/CCMN.1997.0450315.CrossRefGoogle Scholar
Elprince, A.M. Vanselow, A.P. and Sposito, G., (1980) Heterovalent, ternary cation exchange equilibria: NH4+-Ba2+-La3+ exchange on montmorillonite Soil Science Society of America Journal 44 964969 10.2136/sssaj1980.03615995004400050018x.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., (2005) Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 1. Montmorillonite hydration properties American Mineralogist .CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Malikova, N. Planfon, A. Sakharov, B.A. and Drits, V.A., (2005) New insights on the distribution of interlayer water in bi-hydrated smectite from X-ray diffraction profile modeling of 001 reflections Chemistry of Materials 17 34993512 10.1021/cm047995v.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. Geoffroy, N. Jacquot, E. and Drits, V.A., (2006) Investigation of smectite hydration properties by modeling of X-ray diffraction profiles. Part 2. Influence of layer charge and charge location American Mineralogist .CrossRefGoogle Scholar
Fletcher, P. and Sposito, G., (1989) The chemical modeling of clay/electrolyte interactions for montmorillonite Clay Minerals 24 375391 10.1180/claymin.1989.024.2.14.CrossRefGoogle Scholar
Guinier, A., (1964) Théorie et technique de la radiocristallographie Paris Dunod.Google Scholar
Hewish, N.A. Neilson, G.W. and Enderhy, J., (1982) Environment of Ca2+ ions in aqueous solvent Nature 297 138139 10.1038/297138a0.CrossRefGoogle Scholar
Howard, S.A. Preston, K.D., Bish, D.L. and Post, J.E., (1989) Profile fitting of powder diffraction patterns Modern Powder Diffraction Washington, D.C. Mineralogical Society of America 217275 10.1515/9781501509018-011.CrossRefGoogle Scholar
Hyun, S.P. Cho, Y.H. Kim, S.J. and Hahn, P.S., (2000) Cu(II) sorption mechanism on montmorillonite: an electron paramagnetic resonance study Journal of Colloid and Interface Science 222 254261 10.1006/jcis.1999.6632.CrossRefGoogle ScholarPubMed
Kittrick, J.A., (1969) Interlayer forces in montmorillonite and vermiculite Soil Science Society of America Journal 33 217222 10.2136/sssaj1969.03615995003300020017x.CrossRefGoogle Scholar
Kittrick, J.A., (1969) Quantitative evaluation of the strongforce model for expansion and contraction of vermiculite Soil Science Society of America Journal 33 222225 10.2136/sssaj1969.03615995003300020018x.CrossRefGoogle Scholar
Kodama, H. Gatineau, L. and Mering, J., (1971) An analysis of X-ray diffraction line profiles of microcrystalline muscovites Clays and Clay Minerals 19 405413 10.1346/CCMN.1971.0190609.CrossRefGoogle Scholar
Laird, D.A., (1996) Model for crystalline swelling of 2:1 phyllosilicates Clays and Clay Minerals 44 553559 10.1346/CCMN.1996.0440415.CrossRefGoogle Scholar
Laird, D.A., (1999) Layer charge influences on the hydratation of expandable 2:1 phyllosilicates Clays and Clay Minerals 47 630636 10.1346/CCMN.1999.0470509.CrossRefGoogle Scholar
Madejová, J. Bujdak, J. Petit, S. and Komadel, P., (2000) Effects of chemical composition and temperature of heating on the infrared spectra of Li-saturated dioctahedral smectites. (II) Near-infrared region Clay Minerals 35 753761 10.1180/000985500547205.CrossRefGoogle Scholar
Mazzarella, L. Kovacs, A.L. De Santis, P. and Liquori, A.M., (1967) Three-dimensional X-ray analysis of the complex CaBr2.10H2O.2(CH2)6N4 Acta Crystallographica 22 6574 10.1107/S0365110X6700012X.CrossRefGoogle Scholar
Méring, J., (1949) L’interférence des rayons-X dans les systèmes à stratification désordonnée Acta Crystallographica 2 371377 10.1107/S0365110X49000977.CrossRefGoogle Scholar
Mermut, A.R. and Lagaly, G., (2001) Baseline studies of The Clay Minerals Society Source Clays: layer-charge determination and characteristics of those minerals containing 2:1 layers Clays and Clay Minerals 49 393397 10.1346/CCMN.2001.0490506.CrossRefGoogle Scholar
Mooney, R.W. Keenan, A.G. and Wood, L.A., (1952) Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction Journal of the American Chemical Society 74 13311374 10.1021/ja01125a058.CrossRefGoogle Scholar
Moore, D.M. Reynolds, R.C. Jr, (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford and New York Oxford University Press.Google Scholar
Nagelschmidt, G., (1936) The structure of montmorillonite Zeitschrift für Kristallographie 93 481487.CrossRefGoogle Scholar
Norrish, K., (1954) The swelling of montmorillonite Discussions of the Faraday Society 18 120134 10.1039/df9541800120.CrossRefGoogle Scholar
Plançon, A., (2002) New modeling of X-ray diffraction by disordered lamellar structures, such as phyllosilicates American Mineralogist 87 16721677 10.2138/am-2002-11-1216.CrossRefGoogle Scholar
Rhue, R.D. and Reve, W.H., (1990) Exchange capacity and adsorhed-cation charge as affected by chloride and perchlorate Soil Science Society of America Journal 54 705708 10.2136/sssaj1990.03615995005400030012x.CrossRefGoogle Scholar
Sakharov, B.A. Lindgreen, H. Salyn, A. and Drits, V.A., (1999) Determination of illite-smectite structures using multispecimen X-ray diffraction profile fitting Clays and Clay Minerals 47 555566 10.1346/CCMN.1999.0470502.CrossRefGoogle Scholar
Schlegel, M. Manceau, A. Charlet, L. and Hazemann, J.L., (2001) Adsorption mechanisms of Zn on hectorite as a function of time, pH, and ionic strength American Journal of Science 301 798830 10.2475/ajs.301.9.798.CrossRefGoogle Scholar
Shainherg, I. Oster, J.D. and Wood, J.D., (1980) Sodium/calcium exchange in montmorillonite and illite suspension Soil Science Society of America Journal 44 960964 10.2136/sssaj1980.03615995004400050017x.CrossRefGoogle Scholar
Spohr, E. Palinkas, G. Heinzinger, K. Bopp, P. and Prohst, M.M., (1988) A molecular dynamics study of an aqueous SrCl2 solution Journal of Physical Chemistry 92 6754 10.1021/j100334a052.CrossRefGoogle Scholar
Sposito, G., (1977) The Gapon and Vanselow selectivity coefficients Soil Science Society of America Journal 41 12051206 10.2136/sssaj1977.03615995004100060040x.CrossRefGoogle Scholar
Sposito, G., (1981) The Thermodynamics of Soil Solution New York Oxford University Press.Google Scholar
Sposito, G., (1984) Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sposito, G., (1991) Effect of chloride on sodium-calcium and sodium-magnesium exchange on montmorillonite Soil Science Society of America Journal 55 965967 10.2136/sssaj1991.03615995005500040011x.CrossRefGoogle Scholar
Sposito, G. Holtzclaw, K.M. Johnston, C.T. and Le Vesque, C.S., (1981) Thermodynamics of sodium-copper exchange on Wyoming bentonite at 298 K Soil Science Society of America Journal 45 10791084 10.2136/sssaj1981.03615995004500060014x.CrossRefGoogle Scholar
Sposito, G. Holtzclaw, K.M. Charlet, L. Jouany, C. and Page, A.L., (1983) Sodium-calcium and sodium-magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media Soil Science Society of America Journal 47 5156 10.2136/sssaj1983.03615995004700010010x.CrossRefGoogle Scholar
Sposito, G. Holtzclaw, K.M. Jouany, C. and Charlet, L., (1983) Cation selectivity in sodium-calcium, sodiummagnesium, and calcium-magnesium exchange on Wyoming bentonite at 298 K Soil Science Society of America Journal 47 917921 10.2136/sssaj1983.03615995004700050015x.CrossRefGoogle Scholar
Stucki, J.W. Golden, D.C. and Roth, C.B., (1984) Effects of reduction and reoxidation of structural iron on the surface charge dissolution of dioctahedral smectites Clays and Clay Minerals 32 350356 10.1346/CCMN.1984.0320502.CrossRefGoogle Scholar
Suarez, D.L. and Zahow, M.F., (1989) Calcium-magnesium exchange selectivity of Wyoming montmorillonite in chloride, sulfate and perchlorate solutions Soil Science Society of America Journal 53 5257 10.2136/sssaj1989.03615995005300010010x.CrossRefGoogle Scholar
Toumassat, C. Greneche, J.M. Tisserand, D. and Charlet, L., (2004) The titration of clay minerals. Part I. Discontinuous hacktitration technique combined to CEC measurements Journal of Colloid and Interface Science 273 224233 10.1016/j.jcis.2003.11.021.Google Scholar
Toumassat, C. Ferrage, E. Poinsignon, C. and Charlet, L., (2004) The titration of clay minerals. Part II. Structural-based model and implications for clay reactivity Journal of Colloid and Interface Science 273 234246 10.1016/j.jcis.2003.11.022.Google Scholar
Van Olphen, H., (1965) Thermodynamics of interlayer adsorption of water in clays Journal of Colloid Science 20 822837 10.1016/0095-8522(65)90055-3.CrossRefGoogle Scholar
Vanselow, A.P., (1932) Equilibria of the base-exchange reaction of bentonites, permutites, soil colloids and zeolites Soil Science 33 95113 10.1097/00010694-193202000-00002.CrossRefGoogle Scholar
Vanselow, A.P., (1932) The utilization of the base-exchange reaction for the determination of activity coefficients in mixed electrolytes Journal of the American Chemical Society 54 13071311 10.1021/ja01343a005.CrossRefGoogle Scholar
Vantelon, D. Pelletier, M. Michot, L.J. Barres, O. and Thomas, F., (2001) Fe, Mg and Al distribution in the octahedral sheet of montmorillonites. An infrared study in the OH-bending region Clay Minerals 36 369379 10.1180/000985501750539463.CrossRefGoogle Scholar
Walker, G.F., (1956) The mechanism of dehydration of Mg-vermiculite Clays and Clay Minerals 4 101115 10.1346/CCMN.1955.0040115.CrossRefGoogle Scholar