Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:35:26.377Z Has data issue: false hasContentIssue false

Experimental Determinations of the Coherent Scattering Domain Size Distribution of Natural Mica-Like Phases with the Warren-Averbach Technique

Published online by Cambridge University Press:  28 February 2024

Bruno Lanson*
Affiliation:
Laboratoire de Géologie, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
Bernard Kubler
Affiliation:
Institut de Géologie, 11 rue Emile Argand, CH 2007 Neuchâtel, Switzerland
*
*Present address: EAP CSTJF, Laboratoire de géochimie minérale,64018 Pau Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © 1994, Clay Minerals Society

References

Baggerly, R. G., (1974) X-ray analysis of Ti3Al precipitation in Ti-Al alloys: Adv. X-ray Anal. 18, 502513.Google Scholar
Bertaut, F., (1950) Raies de Debye-Scherrer et répartition des dimensions des domaines de Bragg dans les poudres polycristallines: Acta Crystallog. 3, 1418.CrossRefGoogle Scholar
Bienenstock, A., (1961) Determination of crystallite size distributions from X-ray line broadening: J. Appl. Phys. 32, 187189.CrossRefGoogle Scholar
Brindley, G. W., (1980) Order-disorder in clay mineral structures: in Crystal Structures of Clay Minerals and Their X-ray Identification, Brindley, G. W., and Brown, G., eds., Mineral Soc., London 2, 125195.CrossRefGoogle Scholar
Burkhard, M., Kerrich, R., Maas, R., and Fyfe, W. S., (1992) Stable and Sr-isotope evidence for fluid advection during thrusting of the Glarus nappe (Swiss Alps): Contrib. Mineral Petrol. 12, 293311.CrossRefGoogle Scholar
Delhez, R., Keisler, T. H. de, and Mittemeijer, E. J., (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis: Recipes, methods, and comments: Fresenius Z. Anal. Chem. 312, 116.CrossRefGoogle Scholar
Eberl, D. D., and Blum, A., (1993) Illite crystallite thickness by X-ray diffraction: in CMS Workshop Lectures, Vol. 5, Computer Applications to X-ray Powder Diffraction Analysis of Clay Minerals, Reynolds, R. C., and Walker, J. R., eds., Clay Minerals Society, Boulder, 124153.Google Scholar
Eberl, D. D., and Srodon, J., (1988) Ostwald ripening and interparticle-diffraction effects for illite crystals: A mer. Mineral. 73, 13351345.Google Scholar
Eberl, D. D., Srodon, J., Kralik, M., Taylor, B. E., and Peterman, Z. E., (1990) Ostwald ripening of clays and metamorphic minerals: Science 248, 474477.CrossRefGoogle Scholar
Eberl, D. D., and Velde, B., (1989) Beyond the Kubier index: Clay Miner. 24, 571577.CrossRefGoogle Scholar
Huang, T. C., and Parrish, W., (1978) Characterization of thin films by X-ray fluorescence and diffraction analysis: Adv. X-ray Anal. 22, 4363.Google Scholar
Keijser, T. H. de, Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P., (1982) Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening: J. Appl. Cryst. 15, 308314.CrossRefGoogle Scholar
Klug, H. P., and Alexander, L. E., (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley, New York, 966 pp.Google Scholar
Kodama, H., Gatineau, L., and Méring, J., (1971) An analysis of X-ray diffraction line profiles of microcrystalline muscovites: Clays & Clay Minerals, 19, 405413.CrossRefGoogle Scholar
Lanson, B., and Besson, G., (1992) Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns: Clays & Clay Minerals 40, 4052.CrossRefGoogle Scholar
Lanson, B., and Champion, D., (1991) The I/S-to-illite reaction in the late stage diagenesis: Amer. J. Sci. 291, 473506.CrossRefGoogle Scholar
Lanson, B., and Velde, B., (1992) Decomposition of X-ray diffraction patterns: A convenient way to describe complex diagenetic smectite-to-illite evolution: Clays & Clay Minerals 40, 629643.CrossRefGoogle Scholar
Louër, D., (1986) Analysis of the broadening of powder diffraction peaks for ZnO: A test case: Chemica Scripta 26A, 1722.Google Scholar
Louër, D., and Langford, J. I., (1988) Peak shape and resolution in conventional diffractometry with monochromatic X-rays: J. Appl. Cryst. 21, 430437.CrossRefGoogle Scholar
Righi, D., and Meunier, A., (1991) Characterization and genetic interpretation of clays in an acid brown soil (dystrochrept) developed in a granitic saprolite: Clays & Clay Minerals 39, 519530.CrossRefGoogle Scholar
Roof, R. B. Jr. 1971() The effect of self-irradiation on the lattice of 238(80%)PuO2: Adv. X-ray Anal. 15, 307318.Google Scholar
Sato, T., Watanabe, T., and Otsuka, R., (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites: Clays & Clay Minerals 40, 103113.CrossRefGoogle Scholar
Siemens (1990) Diffrac 5000 powder diffraction evaluation software reference manual: Release 2.2, Siemens Analytical Instruments Inc., Madison, Wisconsin.Google Scholar
Srodon, J., (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction: Clays & Clay Minerals 28, 401411.CrossRefGoogle Scholar
Velde, B., Suzuki, T., and Nicot, E., (1986) Pressure-temperature-composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples: Clays & Clay Minerals 34, 435441.CrossRefGoogle Scholar
Wagner, C. N. J., and Aqua, E. N., (1963) Analysis of the broadening of powder pattern peaks from cold-worked face-centered and body centered cubic metals: Adv. X-ray Anal. 7, 4665.Google Scholar
Warren, B. E., and Averbach, B. L., (1950) The effect of coldwork distortion on X-ray patterns: J. Appl. Phys. 21, 595599.CrossRefGoogle Scholar
Warren, B. E., and Averbach, B. L., (1952) The separation of cold-work distortion and particle size broadening in X-ray patterns: J. Appl. Phys. 23, 497.CrossRefGoogle Scholar