Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T19:53:03.421Z Has data issue: false hasContentIssue false

Eustatic and Tectonic/Volcanic Control in Sedimentary Bentonite Formation — A Case Study of Miocene Bentonite Deposits from the Pannonian Basin

Published online by Cambridge University Press:  01 January 2024

Zoltán Püspöki*
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
Miklós Kozák
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
Péter Kovács-Pálffy
Affiliation:
Geological Institute of Hungary, Stefánia út 14., Budapest, H-1142, Hungary
Maria Földvári
Affiliation:
Geological Institute of Hungary, Stefánia út 14., Budapest, H-1142, Hungary
Richard W. McIntosh
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
László Vincze
Affiliation:
Department of Mineralogy and Geology, University of Debrecen, Egyetem tér 1., Debrecen, H-4032, Hungary
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Seven sedimentary bentonite deposits were investigated in the Miocene series of the Pannonian Basin. The following stratigraphic and genetic characteristics were significant: (1) all deposits were formed within a transgressive series of a given Miocene sequence; and (2) it is possible that the source material of the bentonites is rhyolitic, confirmed by radiometric data proving simultaneous rhyolite tuff volcanism.

A detailed investigation on three lithologically different bentonite horizons within the same transgressive series was made at Sajoábaábony to determine the source material and to determine the causes of the differences. X-ray diffraction, differential thermal analysis and geochemical data of the different lithological types show that they all have rhyolitic source material, although in the case of the lowermost horizon the existence of reworked material from an underlying andesite tuff series is also presumed. The main difference is the degree of weathering. Considering the ratio between the amorphous phase and the montmorillonite, the amorphous volcanic glass can be regarded as the main source of the montmorillonite formation. The differences in the degree of alteration can be related to the changing characteristics of the tuff accumulation and the sedimentation. Transgression decreases the sedimentation rate allowing the optimal alteration of the amorphous phase. The increasing intensity of the tuff accumulation can also limit the bentonite formation because rapid deposition and burial present too little time for the optimal alteration of the amorphous phase.

Summarizing the results from the stratigraphic interpretation of the bentonite deposits and from the comparative analyses of the different bentonite horizons within the same transgressive systems tract, we can state that the relationship of the tectonic-related tuff accumulation and the eustasy-related sedimentation rate can affect both the possibility of bentonite formation in macro-scale and the degree of bentonitization in micro-scale.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2005

References

Báldi, T. and Haas, J., (1997) Lower Miocene Lithostratigraphy of North Hungary In commemoration of József Fülöp Budapest Academic Press 215230.Google Scholar
Balla, Z., (1986) Analysis of the anti-clockwise rotation of the Mecsek Mountains (Southwest Hungary) in the Cretaceous: Interpretation of palaeomagnetic data in the light of the geology Geophysical Transactions ELGI 32 147181.Google Scholar
Barna, J., (1957) Investigation of Na-bentonite bearing rhyolite tuff from Salgótarján Bányászati Lapok 1 1014.Google Scholar
Brinkmann, R., (1966) Abriss der Geologie II. Historische Geologie Stuttgart, Germany Ferdinand Enke Verlag 1343.Google Scholar
Englund, J.O. and Jörgensen, P., (1973) A chemical classification system for argillaceous sediments and factors affecting their composition Geologiska Föreningens i Stokholm Fbrhandlinger 95 8797 10.1080/11035897309455428.CrossRefGoogle Scholar
Fodor, L., (1995) From transpression to transtension: Oligocene-Miocene structural evolution of the Vienna basin and the East Alpine-Western Carpathian junction Tectonophysics 242 151182 10.1016/0040-1951(94)00158-6.Google Scholar
Grim, R.E. and Güven, N. (1978) Bentonites — Geology, Mineralogy and Uses. Developments in Sedimentology, 24, Elsevier, Amsterdam, 256 pp.Google Scholar
Gyalog, L. (2001)editor () Proposals for the Hungarian Stratigraphic Committee to introduce (or modify) new stratigraphic units in the joint project of the Hungarian Geological Institute and the MOL Ltd. in the Tokaj Mts -Nyirség, the North Hungarian Mountain Range, the mouth of the Sió river and the Transdanubian Mts regions based on the deep drilling interpretations and the constructions of 1:100000 maps between 1998–2000. Hungarian Geological Institute, pp. 140 (in Hungarian).Google Scholar
Hámor, G., (1985) Geology of the Nógrád-Cserhát area Geologica Hungarica Series Geologica 22 1307.Google Scholar
Hámor, G. and Császár, G., (1997) Sámsonháza Formation Basic Lithostratigraphic Units of Hungary — Charts and short descriptions Budapest The Geological Institute of Hungary 41.Google Scholar
Hámor, G. and Császár, G., (1997) Rákos Limestone Formation Basic Lithostratigraphic Units of Hungary — Charts and short descriptions Budapest The Geological Institute of Hungary 40.Google Scholar
Hámor, G. and Császár, G., (1997) Kozárd Formation Basic Lithostratigraphic Units of Hungary — Charts and short descriptions Budapest The Geological Institute of Hungary 39.Google Scholar
Hámor, G., (1998) Miocene Stratigraphy of Hungary in Geological Formations of Hungary 437454.Google Scholar
Hámor, G., (2001) Miocene palaeogeography of the Carpathian Basin — Explanatory notes to the Miocene palaeogeo-graphic maps of the Carpathian Basin 1:3,000,000 Budapest The Geological Institute of Hungary.Google Scholar
Hámor, G. Ravasz-Baranyai, I. Balogh, K.a.d. and Arva-Soós, E., (1980) Radiometric age of Hungarian Miocene rhyolite tuff horizons Annual Report of the Hungarian Geological Institute for 1978 6574.Google Scholar
Haq, B.U. Hardenbol, J. and Vail, P.R., (1988) Mesozoic and Cenozoic chronostratigraphy and Cycles of Sea-level change — Sea-Level Changes. An Integrated Approach Tulsa, Oklahoma, USA. Society of Sedimentary Geology.Google Scholar
Horváth, F., (1993) Towards a mechanical model for the formation of the Pannonian Basin Tectonophysics 225 333358 10.1016/0040-1951(93)90126-5.Google Scholar
Horváth, M. and Nagymarosy, A., (1979) The age of the Rzehakia Beds and the Garáb Schlier Formation based on nannoplankton and foraminifera research Bulletin of the Hungarian Geological Society 109 211229.Google Scholar
Horváth, F. and Royden, L., (1981) Mechanism for the formation of the Intra-Carpathian Basins: a review Earth Evolution Science 3 307316.Google Scholar
Huff, W.D. Bergström, S.M. Kolata, D.R. and Sun, H., (1997) The Lower Silurian Osmundsberg K-bentonite. Part II: mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance Geological Magazine 135 1526 10.1017/S001675689700811X.Google Scholar
Huff, W.D. Morgan, D.J. and Rundle, C.C., (1997) Silurian K-bentonites of the Welsh Borderlands: Geochemistry, mineralogy and K-Ar ages of illitization .Google Scholar
Jámbor, and Császár, G., (1997) Perbal Formation Basic Lithostratigraphic Units of Hungary — Charts and short descriptions Budapest The Geological Institute of Hungary 41.Google Scholar
Klug, H.P. and Alexander, L.E., (1954) X-ray Diffraction Procedures New York-London-Paris John Wiley & Sons Inc..Google Scholar
Kókay, J., (1966) Geological and paleontological analysis of the lignite deposit at Herend and Márkó. (A herend márkói barnakõszénterület földtani és õslénytani vizsgálata) Geologica Hungarica ser. Paleontologica 36 1149.Google Scholar
Kókay, J., (1967) Upper Tortonian Formations of the Bakony Mountains (A Bakony-hegység felsõtortónai képzõdmé-nyei) Bulletin of the Hungarian Geological Society 91 7490.Google Scholar
Kókay, J., (1984) New data relating to Moldavian structural events Annual Report of the Hungarian Geological Institute for 1982 501503.Google Scholar
Kovács-Pálffy, P., (1998) Comparative mineralogical, geo-chemical and genetic investigations of Tertiary bentonite type mineral deposits .Google Scholar
Kovács, S., (1982) Problems of the “Pannonian Median Massif” and the plate tectonic concept. Contributions based on the distribution of Late Paleozoic — Early Mesozoic isopic zones Geologische Rundschau 71 617639 10.1007/BF01822386.Google Scholar
Kozák, M. Püspöki, Z. and Mcintosh, R., (2001) Structural development outline of the Bükk Mountains reflecting recent regional studies Acta Geographica Debrecina 35 135174.Google Scholar
Kubovics, I. Pécsiné, Dónáth, Rózsavölgyi, J. Nagyné Balogh, J. and Andó, J., (1971) Complex petrological, geochemical and volcanological investigation of sedimentary and volcanic formations from the Cserhát Mts. — Complex REE research in the Cserhát, Final Report Budapest Department of Petrology and Geochemistry.Google Scholar
Le Bas, M.J. Le Maitre, R.W. Streckeisen, A. and Zanettin, B., (1986) A chemical classification of volcanic rocks based on the Total Alkali-Silica diagram Journal of Petrology 11 745750 10.1093/petrology/27.3.745.Google Scholar
Márton, E. and Fodor, L., (1995) Combination of palaeomagnetic and stress data — a case study from North Hungary Tectonophysics 242 99114 10.1016/0040-1951(94)00153-Z.Google Scholar
Márton, E. and Pécskay, Z., (1998) Complex evaluation of paleomanetic and K/Ar isotope data of the Miocene ignimbritic volcanics in the Bükk Foreland, Hungary Acta Geologica Hungarica 41 467476.Google Scholar
Merriman, R.J. and Roberts, B., (1990) Metabentonites in the Moffat Shale Group, Southern Uplands of Scotland: Geochemical evidence of ensialic marginal basin volcanism Geological Magazine 127 259–71 10.1017/S0016756800014527.Google Scholar
Nagymarosy, A., (1980) Correlation of the Badenian in Hungary Bulletin of the Hungarian Geological Society 110 206245.Google Scholar
Nagymarosy, A., (1988) Nannoplankton stratigraphie investigations on the core samples from deep drillings near the seismic cross sections across the North Hungarian Paleogene Basins .Google Scholar
Náray-Szabó, I. Zsoldos, L. and Kálmán, A., (1965) Introduction to XRD Structure Investigation Budapest Association of Hungarian Chemists.Google Scholar
Póka, T. Szakács, A. Seghedi, I. Simonits, A. Zelenka, T. and Nagy, G., (1998) Petrology and geochemistry of the Miocene acidic explosive volcanism of the Bükk Foreland, Pannonian Basin, Hungary Acta Geologica Hungarica 41/4 437466.Google Scholar
Püspöki, Z. Kozák, M. Csámer, Mcintosh, R. and Vincze, L., (2003) Paleogeographic conditions and sequence stratigraphy of the Sarmatian sediment series in the Tardona Hills Bulletin of the Hungarian Geological Society 133 191210.Google Scholar
Radovits, L., (1991) Report on bentonite exploration around Istenmezeje-Váraszó-Erdõkövesd-Pétervàsára in 1991 Budapest The Geological Institute of Hungary.Google Scholar
Rischák, G., (1989) Direct XRD determination of amorphous phase in rocks and soils Annual Report of the Geological Institute of Hungary from 1987 377394.Google Scholar
Rischák, G. and Viczián, I., (1974) Factors infuencing the base reflection intensity of clay minerals Annual Report of the Geological Institute of Hungary from 1972 229256.Google Scholar
Rollinson, H., (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation .Google Scholar
Schmidt, T. Blau, J. and Kázmér, M., (1991) Large-scale strike-slip displacement of the Drauzug and the Transdanubian Mountains in early Alpine history: Evidence from permo-mesozoic facies belts Tectonophysics 200 213232 10.1016/0040-1951(91)90016-L.CrossRefGoogle Scholar
Selmeczi, I. and Császár, G., (1997) Pusztamiske Formation Basic Lithostratigraphic Units of Hungary — Charts and short descriptions Budapest The Geological Institute of Hungary 41.Google Scholar
Seneš, J., (1967) Chronostratigraphie und Neostratotypen. Miozän M3, Miozän der Zentralen Paratethys Vydavatelstvo Slovenskej akademie vied 1312.Google Scholar
Szakács, A. Márton, E. Póka, T. Zelenka, T. Pécskay, Z. and Seghedi, I., (1998) Miocene acidic explosive volcanism in the Biikk Foreland, Hungary: Identifying eruptive sequences and searching for source locations Acta Geologica Hungarica 41 413435.Google Scholar
Széky-Fux, V. Pécskay, Z. and Baloh, K.a.d., (1987) Covered volcanites and their K/Ar radiometric chronology from the Northern and Middle Transtibiscian region Bulletin of the Hungarian Geological Society 117 223235.Google Scholar
Szöőr, G.y. Balázs, , (2003) Thermal Analysis of Core Samples from SzPKF Deep Drillings .Google Scholar
Sztanó, O., (1994) The tide-influenced Pétervására Sandstone, Early Miocene, Northern Hungary: Sedimentology, Palaeogeography and basin development .Google Scholar
Sztanó, O. and Tari, G., (1993) Early Miocene basin evolution in Northern Hungary Tectonophysics 226 485502 10.1016/0040-1951(93)90134-6.CrossRefGoogle Scholar
Tari, G. Horváth, F. and Rumpier, J., (1992) Styles of extension in the Pannonian Basin Tectonophysics 208 203219 10.1016/0040-1951(92)90345-7.Google Scholar
Tari, G. Báldi, T. and Báldi-Beke, M., (1993) Paleogene retroarc flexural basin beneath the Neogene Pannonian Basin: A geodynamic model Tectonophysics 226 433455 10.1016/0040-1951(93)90131-3.Google Scholar
Teale, C.T. and Spears, D.A., (1986) The mineralogy and origin of some Silurian bentonites, Welsh Borderland, UK Sedimentology 33 757765 10.1111/j.1365-3091.1986.tb01974.x.Google Scholar
Thorez, J., (1995) Practical Clay Geology 1525.Google Scholar
Vakarcs, G. Hardenbol, J. Abreu, V.S. Vail, P.R. Várnai, P. and Tari, G., (1998) Oligocène — Middle Miocene Depositional Sequences of the Central Paratethys and their Correlation with Regional Stages Tulsa, Oklahoma, USA. Society for Sedimentary Geologisists 209231.Google Scholar
Winchester, J.A. and Floyd, P.A., (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements Chemical Geology 20 325343 10.1016/0009-2541(77)90057-2.Google Scholar