Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-08T04:27:20.408Z Has data issue: false hasContentIssue false

Equilibration of Clays in Natural and Simulated Bottom-Sediment Environments

Published online by Cambridge University Press:  01 July 2024

F. E. Photon
Affiliation:
Ohio Agricultural Research & Development Center, Wooster, Ohio, 44691
N. E. Smeck
Affiliation:
Ohio Agricultural Research & Development Center, Wooster, Ohio, 44691
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To identify mineral alterations which might occur in stream environments, predominantly illitic soil clays were equilibrated in bottom sediment environments under natural and laboratory conditions for 217 and 98 days, respectively. Changes occurring after 217 days on the bottom of the Auglaize River, Ohio, consisted of a reduction in carbonate content, a decrease in particle size, and a slight loss of Al and Si; however, no significant changes in basal spacings were observed.

Clays equilibrated in river water under laboratory conditions at 4° and 25°C in CO2, N2, or air atmospheres showed only an increase in oxalate-extractable iron. The concentrations of Al, Si, Fe, Mn, K, and Ca in solution above the clays varied with the atmosphere and temperature. The concentrations of Fe, Al, and Si in solution may have been influenced by the dissolution of amorphous Al-Fe-Si compounds. Therefore, the mineralogical differences between soils in the watershed and sediments in the drainage system can not be attributed to mineralogical transformations during residence in the drainage system.

Резюме

Резюме

Чтобы распознать минеральные преобразования, которые могут произойти в среде потока, преимущественно иллитовые почвенные глины были уравновешены в среде донных отложений в естественных и лабораторных условиях на протяжении 217 и 98 дней соответственно. Изменения, происшедшие после 217 дней на дне реки Оглаз включали уменьшение содержания карбоната, уменьшение размеров зерен и небольшие потери А1 и Si; однако не было обнаружено существенных изменений в базальных промежутках.

Глины, уравновешенные в речной воде в лабораторных условиях при 4° и 25°С в С02, N2, или воздушной атмосфере, показали только увеличение содержания железа, извлекаемого оксалатом. Концентрации Al, Si, Fe, Мn, K, и Ca в растворе над глинами изменялись в зависимости от атмосферы и температуры. Растворение аморфных соединений Al-Fe-Si возможно повлияло на концентрацию Fe, Al, и Si в растворе. Следовательно, минералогические различия между почвами в бассейне реки и осадками в дренажной системе не могут быть обусловлены минералогическим преобразованием во время пребывания в дренажных системах. [N.R.]

Resümee

Resümee

Um Mineralumwandlungen zu bestimmen, die in Flußmilieus auftreten können, wurden überwiegend illitische Bodentone in Bodensedimenten unter natürlichen und Labor-Bedingungen für 217 bzw. 98 Tage ins Gleichgewicht gebracht. Die Veränderungen, die nach 217 Tagen auf dem Grund des Auglaize-Flusses auftraten, bestanden in einer Abnahme des Karbonatgehaltes, einer Verkleinerung der Teilchengröße und einem geringen Verlust von Al und Si. Es wurden jedoch keine bemerkenswerten Veränderungen bei den Basisabständen beobachtet.

Tone, die unter Laborbedingungen bei 4° und 25°C in Flußwasser bei CO2-, N2-, und Luft-Atmosphäre ins Gleichgewicht gebracht wurden, zeigen nur eine zunahme des durch Oxalat extrahierbaren Eisens. Die Konzentrationen von Al, Si, Fe, Mn, K, und Ca in der Lösung über den Tonen variiert mit der Art der Atmosphäre und mit der Temperatur. Die Konzentrationen an Fe, Al, und Si in der Lösung könnten durch die Auflösung amorpher Al-Fe-Si-Komponenten beeinflußt werden. Deshalb können die mineralogischen Unterschiede zwischen den Böden im Einzugsgebiet und den Sedimenten im Entwässerungssystem nicht auf mineralogische Veränderungen während des Aufenthalts im Entwässerungssystem zurückgeführt werden. [U.W.]

Résumé

Résumé

Pour identifier les altérations minérales qui se produire dans des environements fluviaux, des argiles de sol predominément illitiques ont été équilibrées dans des environements de sédiments de lit sous des conditions naturelles et de laboratoire pendant respectivement 217 et 98 jours. Les changements qui se sont produits après 217 jours dans le lit de la rivière Auglaize consistaient en une réduction en contenu en carbonate, en une diminution de la taille de particule, et en une légère perte d'Al et Si; aucun changement significatif n'a cependant été observé dans les espacements de base.

Les argiles équilibrées dans l'eau de rivière sous des conditions de laboratoire à 4° et 25°C dans des atmosphères CO2, N2, ou l'air n'ont montré qu'un accroissement en fer à oxalate qui peut être extrait. Les concentrations en Al, Si, Fe, Mn, K, et Ca en solution au dessus des argiles variaient selon l'atmosphère et la température. Les concentrations en Fe, Al, et Si en solution peuvent avoir été influencées par la dissolution de composés Al-Fe-Si amorphes. Les différences minéralogiques entre les argiles dans la ligne de partage des eaux et dans les sédiments du système de drainage ne peuvent donc pas être attribuées à des transformations minéralogiques se produisant pendant la résidence dans le système de drainage. [D.J.]

Type
Research Article
Copyright
Copyright © 1981, The Clay Minerals Society

Footnotes

1

Journal article No. 8–80.

References

Bernas, B., (1968) A new method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry Anal. Chem. 40 16821686.Google Scholar
Chapman, H. D. and Black, C. A., (1965) Cation exchange capacity Methods of Soil Analysis Madison, Wisconsin American Society of Agronomy 891901.Google Scholar
Connell, W. E. and Patrick, W. H., (1968) Sulfate reduction in soil. Effects of redox potential and pH Science 159 8687.CrossRefGoogle ScholarPubMed
Doner, H. E. Lynn, W. C., Dixon, J. B. and Weed, S. B., (1977) Carbonate, halide, sulfate, and sulfide minerals Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 7598.Google Scholar
Dreimanis, A., (1962) Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus J. Sediment. Petrology 32 520529.Google Scholar
Frink, C. R., (1969) Chemical and mineralogical characteristics of eutrophic lake sediments Soil Sci. Soc. Amer. Proc. 33 369372.CrossRefGoogle Scholar
Gotoh, S. and Patrick, W. H., (1972) Transformation of manganese in a waterlogged soil as affected by redox potential and pH Soil Sci. Soc. Amer. Proc. 36 738742.Google Scholar
Green, D. B. and Smeck, N. E., (1979) Occurrence and stability of calcite in the Maumee River J. Environ. Qual. 8 182188.Google Scholar
Hashimoto, I. Jackson, M. L. and Swineford, A., (1960) Rapid dissolution of allophane and kaolinite-halloysite after dehydration Clays and Clay Minerals, Proc. 7th Nat. Conf., Washington, D.C., 1958 New York Pergamon Press 102113.Google Scholar
Jackson, M. L., (1975) Soil Chemical Analysis—Advanced Course 2nd Madison, Wisconsin Publ. by author.Google Scholar
Jackson, T. A., (1977) A relationship between crystallographic properties of illite and chemical properties of extractable organic matter in pre-Phanerozoic and Phanerozoic sediments Clay & Clay Minerals 25 187195.CrossRefGoogle Scholar
Johns, W. D. Grim, R. E. and Bradley, W. F., (1954) Quantitative estimations of clay minerals by diffraction methods J. Sediment. Petrology 24 242251.Google Scholar
Kinter, E. B. and Diamond, S., (1956) A new method for preparation and treatment of oriented specimens of soil clays for X-ray diffraction analysis Soil Sci. 81 111120.Google Scholar
Lietzke, D. A. and Mortland, M. M., (1973) The dynamic character of a chloritized vermiculite soil clay Soil Sci. Soc. Amer. Proc. 37 651656.CrossRefGoogle Scholar
McKeague, J. A. and Day, J. H., (1966) Dithionite and oxalate extractable iron and aluminum as aids in differentiating various classes of soils Can. J. Soil Sci. 46 1322.Google Scholar
Mehra, O. P. and Jackson, M. L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate: Clays and Clay Minerals, Proc. 7th Nat. Conf., Washington, D.C., 1958, Swineford, Ada, ed., Pergamon Press, 317327.Google Scholar
Murad, E. and Fischer, W. R., (1978) Mineralogy and heavy metal contents of soils and stream sediments in rural region of western Germany Geoderma 21 133145.CrossRefGoogle Scholar
Rainwater, F. O. H. and Thatcher, L. L. (1960) Methods for collection and analysis of water samples: Geol. Surv. Water Supply Paper 1454, 301 pp.Google Scholar
Redman, I. H. and Patrick, W. H. (1965) Effect of submergence on several biological and chemical soil properties: La. State Univ., Res. Bull. 592, 28 pp.Google Scholar
Rhoton, F. E. Smeck, N. E. and Wilding, L. P., (1979) Preferential clay mineral erosion from watersheds in the Maumee River Basin J. Environ. Qual. 8 547550.Google Scholar
Wall, G. J. and Wilding, L. P., (1976) Mineralogy and related parameters of fluvial suspended sediments in northwestern Ohio J. Environ. Qual. 5 168173.Google Scholar
Wall, G. J., Wilding, L. P., and Miller, R. H. (1974) Biological transformations of clay-sized sediments in simulated aquatic environments: Proc. 17th Conf. Great Lakes Res., 207211.Google Scholar
Wall, G. J. Wilding, L. P. and Smeck, N. E., (1978) Physical, chemical, and mineralogical properties of fluvial unconsolidated bottom sediments in northwestern Ohio J. Environ. Qual. 7 319325.CrossRefGoogle Scholar
Wilding, L. P. Smeck, N. E. Drees, L. R., Dixon, J. B. and Weed, S. B., (1977) Silica in soils: Quartz, cristobalite, tridymite, and opal Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 471552.Google Scholar