Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-15T15:17:30.582Z Has data issue: false hasContentIssue false

The Electrophoretic Mobility of Imogolite and Allophane in the Presence of Inorganic Anions and Citrate

Published online by Cambridge University Press:  28 February 2024

Chunming Su
Affiliation:
USDA/ARS, U.S. Salinity Laboratory, 4500 Glenwood Drive, Riverside, California 92501
James B. Harsh
Affiliation:
Department of Crop and Soil Sciences, College of Agriculture and Home Economics, Washington State University, Pullman, Washington 99164-6420
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this study was to investigate bonding mechanisms of representative inorganic anions and citrate with imogolite and allophane using electrophoresis. The electrophoretic mobility (EM) of synthetic imogolite and allophanes with Al/Si molar ratios of 2.02, 1.64, and 1.26 was determined in 0.001 and 0.01 M sodium solutions. The highest point of zero mobility (PZM) values for imogolite and the highest point of zero charge (PZC) values for allophane occurred in the presence of ClO4, NO3, Br, I, and Cl. Below the PZM and PZC, Cl and I lowered the EM relative to the other anions but did not shift the PZM and PZC significantly. This indicates that Cl and I formed more outer-sphere complexes than the other ions. The EM of imogolite and allophane was negative at pH < 6 in 0.001 and 0.01 M NaF probably due to a phase change. We observed the formation of cryolite (Na3AlF6) with transmission electron microscopy (TEM) and X-ray diffraction (XRD) in the NaF systems at low pH. Conversely, phosphate at 0.001 and 0.01 M concentrations lowered both the PZM and the EM in imogolite and both the PZC and the EM in allophane compared with ClO4. Phosphate-treated allophane had the same PZC as a synthetic amorphous aluminum phosphate. The PZM values of imogolite and allophane with 2:1 Al/Si in 0.0001 M Na-citrate were 10.9 and 5.9, respectively. At pH 7.3, Na-citrate lowered allophane EM more than it lowered imogolite EM relative to ClO4.

The EM in NaClO4 and Na2SO4 was reversible by forward- and back-titration with NaOH and HClO4, indicated that ClO4 and SO4 were not specifically adsorbed. Chloride likely formed more outer-sphere complexes than ClO4. Imogolite EM and allophane EM in dilute NaF and NaH2PO4 solutions were not reversible, indicating either surface inner-sphere complexes or surface precipitates of aluminum fluoride and amorphous aluminum phosphate-like materials on these minerals. Sulfate gave a lower EM than the monovalent anions, implying a greater tendency to form outer-sphere complexes. Citrate appeared to form inner-sphere complexes on both imogolite and allophane, but formation was concentration-dependent. The tendency of anions to form surface complexes with imogolite and allophane is consistent with the tendency of anions to form soluble aluminum complexes.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Footnotes

*

Contribution from the College of Agriculture and Home Economics Research Center, Pullman, Washington, Paper No. 9301-26, Project 0694.

References

Behr, B. and Wendt, H., 1962 Fast ion reactions in solutions. I. Formation of aluminum sulfate complexes Z. Electrochem. 66 223228.Google Scholar
Birrell, K. S., 1961 Ion fixation by allophane N.Z. J. Sci. 4 393414.Google Scholar
Bjerrum, N., and Dahm, C. R., (1931) The aluminum phosphates. I. Complex formation in acid solutions: Z. Phys. Chem. Bodenstein-Festband, 627.Google Scholar
Bohn, H. L. and Peech, M., 1969 Phosphatoiron (III) and phosphatoaluminum complexes in dilute solutions Soil Sci. Soc. Am. Proc. 33 873878 10.2136/sssaj1969.03615995003300060022x.CrossRefGoogle Scholar
Bolan, N. S., Syers, J. K., Tillman, R. W. and Scotter, D. R., 1988 Effect of liming and phosphate additions on sulfate leaching in soils J. Soil Sci. 39 493504 10.1111/j.1365-2389.1988.tb01234.x.CrossRefGoogle Scholar
Clark, C. J. and McBride, M. B., 1984 Cation and anion retention by natural and synthetic allophane and imogolite Clays & Clay Minerals 32 291299 10.1346/CCMN.1984.0320407.CrossRefGoogle Scholar
Escudey, M., Galindo, G. and Ervin, J., 1986 Effectofiron oxide dissolution treatment on the isoelectric point of al-lophanic soils Clays & Clay Minerals 34 108110 10.1346/CCMN.1986.0340116.CrossRefGoogle Scholar
Fieldes, M. and Perrott, K. W., 1966 The nature of allophane in soils. Part 3. Rapid field and laboratory test for allophane N. Z. J. Sci. 9 623629.Google Scholar
Garrels, R. M. and Christ, C. L., 1965 Solutions, Minerals and Equilibria New York Harper & Row.Google Scholar
Hansmann, D. D. and Anderson, M. A., 1985 Using electrophoresis in modelling sulfate, selenite, and phosphate adsorption onto goethite Environ. Sci. Technol. 19 544551 10.1021/es00136a010.CrossRefGoogle ScholarPubMed
Harsh, J. B. and Xu, S., 1990 Microelectrophoresis applied to the surface chemistry of clay minerals Adv. in Soil Sci. 14 136165.Google Scholar
Horikawa, Y. and Hirose, K., 1975 Spectrophotometric measurement of flocculation rate of selected clays Clay Sci. 4 271280.Google Scholar
Hunter, R. J., 1981 Zeta Potential in Colloid Science London Academic Press.Google Scholar
Imai, H., Goulding, W. T. and Talibudeen, O., 1981 Phosphate adsorption in allophanic soils J. Soil Sci. 32 555570 10.1111/j.1365-2389.1981.tb01729.x.CrossRefGoogle Scholar
Karube, J., Nakaaishi, K., Sugimoto, H. and Fujihira, M., 1992 Electrophoretic behavior of imogolite under alkaline conditions Clays & Clay Minerals 6 625628 10.1346/CCMN.1992.0400601.CrossRefGoogle Scholar
Langmuir, D. and Jenne, E. A., 1979 Techniques of estimating thermodynamic properties for some aqueous complexes of geochem-ical interest Chemical Modeling in Aqueous Systems: Speciation, Sorption, Solubility, and Kinetics Washington, D.C. American Chemical Society 353387 10.1021/bk-1979-0093.ch018.CrossRefGoogle Scholar
Martin, R. R. and Smart, R. S. C., 1987 X-ray photoelec-tron studies of anion adsorption on goethite Soil Sci. Soc. Am. J. 51 5456 10.2136/sssaj1987.03615995005100010010x.CrossRefGoogle Scholar
Nanzyo, M., 1987 Formation of noncrystalline aluminum phosphate through phosphate sorption on allophanic ando soils Commun. Soil Sci. Plant Anal. 18 735742 10.1080/00103628709367857.CrossRefGoogle Scholar
Nordstrom, D. K., May, H. M. and Sposito, G., 1989 Aqueous equilibrium data for mononuclear aluminum species The Environmental Chemistry of Aluminum Boca Raton, Florida CRC Press 2953.Google Scholar
Ohman, L.-O. and Sjoberg, S., 1983 Equilibrium and structural studies of silicon (IV) and aluminum (III) in aqueous solution. IX. A potentiometric study of mono- and polynuclear aluminum (III) citrates J. Chem. Soc. Dalton Trans. 37 25132518 10.1039/DT9830002513.CrossRefGoogle Scholar
Parfitt, R. L., 1978 Anion adsorption by soils and soil materials Adv. in Agron. 30 150.Google Scholar
Parfitt, R. L., 1989 Phosphate reactions with natural allophane, ferrihydrite and goethite J. Soil Sci. 40 359369 10.1111/j.1365-2389.1989.tb01280.x.CrossRefGoogle Scholar
Parfitt, R. L., 1990 Allophane in New Zealand—A review Aust. J. Soil Res. 28 343360 10.1071/SR9900343.CrossRefGoogle Scholar
Parfitt, R. L. and Smart, R. S. C., 1977 The mechanism of sulfate adsorption on iron oxide Soil Sci. Soc. Am. J. 42 4850 10.2136/sssaj1978.03615995004200010011x.CrossRefGoogle Scholar
Perrott, K. W., Smith, B F L and Inkson, R. H. E., 1976a The reaction of fluoride with soils and soil minerals J. Soil Sci. 27 5867 10.1111/j.1365-2389.1976.tb01975.x.CrossRefGoogle Scholar
Perrott, K. W., Smith, B. L. and Mitchell, B. D., 1976b Effect of pH on the reaction of sodium fluoride with hydrous oxides of silicon, aluminum, and iron, and with poorly ordered aluminosilicates J. Soil Sci. 27 348356 10.1111/j.1365-2389.1976.tb02006.x.CrossRefGoogle Scholar
Prabhudesai, S. S. and Kadrekar, S. B., 1984 Reaction products from fertilizer phosphorus in lateritic soils of Kon-kan region J. Indian Soc. Soil Sci. 32 5256.Google Scholar
Rajan, S. S. S., (1975a) Mechanism of phosphate adsorption by allophane clays: N.Z. J. Sci. b 93101.Google Scholar
Rajan, S. S. S., 1975b Phosphate adsorption and the displacement of structural silicon in an allophane clay J. Soil Sci. 26 250256 10.1111/j.1365-2389.1975.tb01949.x.CrossRefGoogle Scholar
Rajan, S. S. S., 1978 Sulfate adsorption on hydrous alumina, ligands displaced and changes in surface charge Soil Sci. Soc. Am. J. 42 3944 10.2136/sssaj1978.03615995004200010009x.CrossRefGoogle Scholar
Rajan, S S S and Perrott, K. W., 1975 Phosphate adsorption by synthetic amorphous aluminosilicates J. Soil Sci. 26 257266 10.1111/j.1365-2389.1975.tb01950.x.CrossRefGoogle Scholar
Ryden, J. C., Syers, J. K. and Tillman, R. W., 1987 Inorganic anion sorption and interaction with phosphate sorption by hydrous ferric oxide gel J. Soil Sci. 38 211217 10.1111/j.1365-2389.1987.tb02138.x.CrossRefGoogle Scholar
Sillen, L. G. and Martell, A. E., 1964 Stability Constants ofMeial-ion Complexes. Section I: Inorganic Ligands London The Chemical Society.Google Scholar
Smith, R. M. and Martell, A. E., 1976 Critical Stability Constants: Vol. 4 New York Plenum Press 10.1007/978-1-4757-5506-0.CrossRefGoogle Scholar
Su, C., Harsh, J. B. and Bertsch, P. M., 1992 Sodium and chloride sorption by imogolite and allophanes Clays & Clay Minerals 40 280286 10.1346/CCMN.1992.0400305.CrossRefGoogle Scholar
Theng, B K G Russell, M., Churchman, G. J. and Parfitt, R. L., 1982 Surface properties of allophane, halloysite and imogolite Clays & Clay Minerals 30 143149 10.1346/CCMN.1982.0300209.CrossRefGoogle Scholar
Van Riemsdijk, W. H. and Lyklema, J., 1980 Reaction of phosphate with gibbsite (Al(OH)3) beyond the adsorption maximum J. Colloid Interface Sci. 76 5566 10.1016/0021-9797(80)90270-2.CrossRefGoogle Scholar
Van Riemsdijk, W. H., Boumans, L J M and de Haan, F. A. M., 1984 Phosphate sorption by soils. I. A diffusion-precipitation model for the reaction of phosphate with metal-oxides in soil Soil Sci. Soc. Am. J. 48 537540 10.2136/sssaj1984.03615995004800030013x.CrossRefGoogle Scholar
Veith, J. A. and Sposito, G., 1977 Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: The formation of X-ray amorphous analogs of variscite and montebrasite Soil Sci. Soc. Am. J. 41 870876 10.2136/sssaj1977.03615995004100050011x.CrossRefGoogle Scholar
Wada, K., Dixon, J. B. and Weed, S. B., 1989 Allophane and Imogolite Minerals in Soil Environments Madison, Wisconsin Soil Sci. Soc. Am..Google Scholar
Wulfsberg, G., 1987 Principles of Descriptive Inorganic Chemistry Monterey, California Brooks/Cole Publishing Company.Google Scholar
Xu, S., Harsh, J. B., Boyle, J. S., et al. , Wright, R. J., 1991 et al. , Solid phase control of aluminum activity in an artificial plant growth medium containing hydroxy-Al-montmorillonite Plant-soil Interactions at Low pH The Netherlands Kluwer Academic Publishers 2534 10.1007/978-94-011-3438-5_3.CrossRefGoogle Scholar
Yates, D. E. and Healy, T. N., 1975 Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces J. Colloid Interface Sci. 52 222228 10.1016/0021-9797(75)90192-7.CrossRefGoogle Scholar
Yuan, T., 1980 Adsorption of phosphate and water-ex-tractable soil organic material by synthetic aluminum silicates and soils Soil Sci. Soc. Am. J. 44 951955 10.2136/sssaj1980.03615995004400050015x.CrossRefGoogle Scholar
Zachara, J. M., Kittrick, J. A., Dake, L. S. and Harsh, J. B., 1989 Solubility and surface spectroscopy of zinc precipitates on calcite Geochim. Cosmochim. Acta 53 919 10.1016/0016-7037(89)90268-8.CrossRefGoogle Scholar
Zhang, P. C. and Sparks, D. L., 1990 Kinetics and mechanisms of sulfate adsorption/desorption on goethite using pressure-jump relaxation Soil Sci. Soc. Am. J. 54 12661273 10.2136/sssaj1990.03615995005400050011x.CrossRefGoogle Scholar
Zhang, G. Y., Zhang, X. N. and Yu, T. R., 1987 Adsorption of sulfate and fluoride by variable charge soils J. Soil Sci. 38 2738 10.1111/j.1365-2389.1987.tb02120.x.CrossRefGoogle Scholar