Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T18:20:20.908Z Has data issue: false hasContentIssue false

Electron Microscopy Study of Volcanic Tuff Alteration to Illite-Smectite Under Hydrothermal Conditions

Published online by Cambridge University Press:  28 February 2024

S. de la Fuente*
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
J. Cuadros
Affiliation:
Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
S. Fiore
Affiliation:
Istituto di Ricerca sulle Argille, CNR, Via S. Loja, 85050 Tito Scalo (Pz), Italy
J. Linares
Affiliation:
Istituto di Ricerca sulle Argille, CNR, Via S. Loja, 85050 Tito Scalo (Pz), Italy
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Experimental alteration of volcanic tuff from Almeria, southeastern Spain, was performed in solutions with different Na/K ratios (0.01, 1, 10, and 100), different total salt concentrations (0.01, 0.1, 0.2, 0.33, and 1 M), and in deionized water, at 60, 80, 120, and 160°C, for periods of 60, 90, 180, and 360 d. Two particle size fractions of volcanic tuff were used: 10–200 and 20–60 μm. Alteration products were examined by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), laser-particle size analysis, scanning electron microscopy equipped with an energy dispersive X-ray spectrometer (SEM-EDS), image computer analysis, and transmission electron microscopy with microanalysis (TEM-AEM). XRD detected neoformed phases only in the products from experiments of 180–360 d at high temperatures (120–160°C), and with Na/K ratios above unity and in deionized water. The synthesized phase is a random mixed-layer illite-smectite (I-S) with 75% smectite. The quantity of newly formed I-S, determined by FTIR, ranged between 3–30%. There was no apparent change in grain size and shape of the grains after the experiments as compared to before.

SEM-EDS and TEM-AEM revealed the following alteration sequence: 1) intense etching on glass-grain surfaces; 2) formation of hemispherical morphologies on grain surfaces; 3) precipitation of very thin, individual flakes of illite-smectite on glass-grain surfaces; 4) development of I-S at the edges of glass grains; and 5) development of I-S honeycomb structures either covering large areas of the glass grains or resulting from the complete alteration of glass grains. A direct transformation of glass to I-S seems to be the major reaction mechanism, although there also is evidence of glass dissolution and subsequent I-S precipitation.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Abdelouas, A. Crovisier, J. Lutze, W. Fritz, B. Mosser, A. and Müller, R., 1994 Formation of hydrotalcite-like compounds during R7T7 nuclear waste glass and basaltic glass alteration Clays and Clay Minerals 42 526533 10.1346/CCMN.1994.0420503.CrossRefGoogle Scholar
Amouric, M. and Olives, J., 1991 Illitization of smectite as seen by high-resolution transmission electron microscopy European Journal of Mineralogy 3 831835 10.1127/ejm/3/5/0831.CrossRefGoogle Scholar
Banfield, J.E. and Barker, W.W., 1998 Low-temperature alteration in tuffs from Yucca Mountain, Nevada Clays and Clay Minerals 46 2737 10.1346/CCMN.1998.0460104.CrossRefGoogle Scholar
Bellon, H., 1976 Séries magmatiques néogènes et quaternaires du pourtour de la Méditerranée occidentale, comparées dans leur cadre géochronométrique—implications géodinamiques Paris, France Université de Paris Sur.Google Scholar
Bellon, H. Bordet, P. and Montenat, C., 1983 Chronologie du magmatisme néogene des Cordillères Bétiques (Espagne meridionale) Bulletin Société Géologique de France 25 205217 10.2113/gssgfbull.S7-XXV.2.205.CrossRefGoogle Scholar
Berkgaut, V. Singer, A. and Stahr, K., 1994 Palagonite reconsidered: Paracrystalline illite-smectites from regoliths on basic pyroclastics Clays and Clay Minerals 42 582592 10.1346/CCMN.1994.0420511.CrossRefGoogle Scholar
Brindley, G.W. Lemaitre, J. and Newman, A.C.D., 1987 Thermal, oxidation and reduction reactions of clay minerals Chemistry of Clays and Clay Minerals London Mineralogical Society 319370.Google Scholar
Caballero, E., 1985 Quimismo del proceso de bentonitiza-ción en la región volcánica de Cabo de Gata (Almeria) Granada, Spain Universidad de Granada.Google Scholar
Crovisier, J.L. Eberhart, J.P. Thomassin, J.H. Juteau, T. Touray, J.C. and Ehret, G., 1982 Interaction “eau de mer-verre basaltique” à 50°C. Formation d’un hydroxycarbon-ate et de produits silicates amorphes (Al, Mg) et mal cristallisés (Al, Fe, Mg). Etude en microscopie électronique et par spectrométrie des photoélectrons (E.S.C.A.) Comptes Rendus de l’Académie des Sciences de Paris, Série II 294 989994.Google Scholar
Crovisier, J.L. Honnorez, J. and Fritz, B., 1992 Dissolution of subglacial volcanic glasses from Iceland: Laboratory study and modelling Applied Geochemistry 1 5581 10.1016/S0883-2927(09)80064-4.CrossRefGoogle Scholar
Di Battistini, G. Toscani, L. Iaccarino, S. and Villa, I.M., 1987 K/Ar ages and the geological setting of calc-alkaline volcanic rocks from Sierra de Gata, SE Spain Neues Jahrbuch für Mineralogie. Monatshefte 8 337383.Google Scholar
Drits, V.A. Salyn, A.L. and Sucha, V., 1996 Structural transformations of interstratified illite-smectites from Dolnâ Ves hydrothermal deposits: Dynamics and mechanisms Clays and Clay Minerals 44 181190 10.1346/CCMN.1996.0440203.CrossRefGoogle Scholar
Farmer, V.C. and Farmer, V.C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331363 10.1180/mono-4.15.CrossRefGoogle Scholar
Fernandez Soler, J.M., 1992 El volcanismo calco-alcalino de Cabo de Gata (Almeria) Granada, Spain Universidad de Granada.Google Scholar
Fiore, S., 1993 The occurrences of smectite and illite in a pyroclastic deposit prior to weathering: Implications on the genesis of 2:1 clay minerals in volcanic soils Applied Clay Science 8 249259 10.1016/0169-1317(93)90007-N.CrossRefGoogle Scholar
Fiore, S. Huertas, F. J. Tazaki, K. Huertas, F. and Linares, J., 1999 A low temperature experimental alteration of a rhyolitic obsidian European Journal of Mineralogy 11 455469 10.1127/ejm/11/3/0455.CrossRefGoogle Scholar
Ghiara, M.R. Franco, E. Petti, C. Stanzione, D. and Valentino, G.M., 1993 Hydrothermal interaction between basaltic glass, deionized water and seawater Chemical Geology 104 125138 10.1016/0009-2541(93)90146-A.CrossRefGoogle Scholar
Hall, A., 1998 Zeolitization of volcaniclastic sediments: The role of temperature and pH Journal of Sedimentary Research 68 739745 10.2110/jsr.68.739.CrossRefGoogle Scholar
Hofmann, F. and Jager, E., 1959 Saponite as an alteration product of basaltic tuff at Karolihof Schweizerische Mineralogische und Petrographische Mitteilungen 39 117124.Google Scholar
Inoue, A. Watanabe, T. Kohoyama, N. and Brusewitz, A.M., 1990 Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweden Clays and Clay Minerals 38 241249 10.1346/CCMN.1990.0380302.CrossRefGoogle Scholar
Inoue, A. Utada, M. and Wakita, K., 1992 Smectite-to-illite conversion in natural hydrothermal systems Applied Clay Science 7 131145 10.1016/0169-1317(92)90035-L.CrossRefGoogle Scholar
Kawano, M. and Tornita, K., 1992 Formation of allophane and beidellite during hydrothermal alteration of volcanic glass below 200°C Clays and Clay Minerals 40 666674 10.1346/CCMN.1992.0400606.CrossRefGoogle Scholar
Kawano, M. and Tomita, K., 1995 Experimental study on the formation of clay minerals from obsidian by interaction with acid solution at 150° and 200°C Clays and Clay Minerals 41 212222 10.1346/CCMN.1995.0430208.CrossRefGoogle Scholar
Kawano, M. and Tornita, K., 1997 Experimental study of the formation of zeolites from obsidian by interaction with NaOH and KOH solutions at 150 and 200°C Clays and Clay Minerals 45 365377 10.1346/CCMN.1997.0450307.CrossRefGoogle Scholar
Kawano, M. Tornita, K. and Kamino, Y., 1993 Formation of clay minerals during low temperature. Experimental alteration of obsidian Clays and Clay Minerals 41 431441 10.1346/CCMN.1993.0410404.CrossRefGoogle Scholar
Kawano, M. Tornita, K. and Shinohara, Y., 1997 Analytical electron microscopic study of the noncrystalline products formed at early weathering stages of volcanic glass Clays and Clay Minerals 45 440447 10.1346/CCMN.1997.0450313.CrossRefGoogle Scholar
Keene, J.B. Clague, D.A. and Nishimori, R.K., 1976 Experimental hydrothermal alteration of tholeiitic basalt: Resultant mineralogy and textures Journal of Sedimentary Petrology 46 647653.Google Scholar
Lanson, B. and Champion, D., 1991 The I/S-to-illite reaction in the late stage diagenesis American Journal of Science 291 473506 10.2475/ajs.291.5.473.CrossRefGoogle Scholar
Linares, J., 1985 The process of bentonite formation in Cabo de Gâta, Almeria, Spain Mineralogica et Petrographica Acta 29–A 1733.Google Scholar
Mackenzie, R.C. and Mackenzie, R.C., 1970 Simple phyllosilicates based on gibb-site- and brucite-like sheets Differential Thermal Analysis, Volume 1. Fundamental Aspects London Academic Press 504514.Google Scholar
Magonthier, M.C. Petit, J.C. and Dran, J.C., 1992 Rhyolitic glasses as natural analogues of nuclear waste glasses: Behaviour of an Icelandic glass upon natural aqueous corrosion Applied Geochemistry 1 8393 10.1016/S0883-2927(09)80065-6.CrossRefGoogle Scholar
Mariner, R.H. and Surdam, R.C., 1970 Alkalinity and formation of zeolites in saline alkaline lakes Science 170 977980 10.1126/science.170.3961.977.CrossRefGoogle ScholarPubMed
McDaniel, P.A. Falen, A.L. Tice, K.R. Graham, R.C. and Fendorf, S.E., 1995 Beidellite in E horizons of northern Idaho spodosols formed in volcanic ash Clays and Clay Minerals 43 525532 10.1346/CCMN.1995.0430502.CrossRefGoogle Scholar
Nagasawa, K., Sudo, T. and Shimoda, S., 1978 Kaolin Minerals Clays and Clay Minerals of Japan. Developments in Sedimentology, Volume 26 New York Elsevier 189219 10.1016/S0070-4571(08)70686-1.CrossRefGoogle Scholar
Shapiro, L., 1975 Rapid Analysis of Silicate, Carbonate, and Phosphate Rocks Washington D.C. U.S. Geological Survey Bulletin 1401.Google Scholar
Sucha, V. Kraus, I. Gerthofferovâ, H. Petes, J. and Serekovâ, M., 1993 Smectite to illite conversion in bentonites and shales of the east Slovak Basin Clay Minerals 28 243253 10.1180/claymin.1993.028.2.06.CrossRefGoogle Scholar
Tazaki, K. Fyfe, W.S. and van der Gaast, S.J., 1989 Growth of clay minerals in natural and synthetic glasses Clays and Clay Minerals 37 348354 10.1346/CCMN.1989.0370408.CrossRefGoogle Scholar
Tazaki, K. Tiba, T. Aratani, M. and Miyachi, M., 1992 Structural water in volcanic glass Clays and Clay Minerals 40 122127 10.1346/CCMN.1992.0400113.CrossRefGoogle Scholar
Thomassin, J.H. Boutonnât, F. Touray, J.C. and Baillif, P., 1989 Geochemical role of the water/rock ratio during the experimental alteration of a synthetic basaltic glass at 50°C An XPS and STEM investigation European Journal of Mineralogy 1 261274 10.1127/ejm/1/2/0261.CrossRefGoogle Scholar
Tornita, K. Yamane, H. and Kawano, M., 1993 Synthesis of smectite from volcanic glass at low temperature Clays and Clay Minerals 41 655661 10.1346/CCMN.1993.0410603.Google Scholar
Wada, K., 1987 Minerals formed and mineral formation from volcanic ash by weathering Chemical Geology 60 1728 10.1016/0009-2541(87)90106-9.CrossRefGoogle Scholar
Zevenbergen, C. Van Reeuwijk, L.P. Bradley, J.P. Bloemen, P. and Comans, R.N.J., 1996 Mechanism and conditions of clay formation during natural weathering of MSWI bottom ash Clays and Clay Minerals 44 546552 10.1346/CCMN.1996.0440414.CrossRefGoogle Scholar