Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T06:38:04.210Z Has data issue: false hasContentIssue false

Electromobility of Mica Particles Dispersed in Aqueous Solutions

Published online by Cambridge University Press:  02 April 2024

R. M. Pashley*
Affiliation:
Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544
*
1On leave from Department of Applied Mathematics, Research School of Physical Sciences, Australian National University, Canberra, ACT 2601, Australia.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mobility measurements were made for dry-ground mica particles dispersed in aqueous KCl, Cr(NO3)3, and cetyltrimethylammonium bromide (CTAB) solutions. In the latter solutions charge reversal occurred at about 2 × 10-6 M and 3 × 10-5 M, respectively. Negative zeta potentials in KCl solutions calculated using the Smoluchowski equation are about one third of the corresponding values obtained from streaming potentials and force measurements using mica sheets. Good agreement, however, was obtained when positively charged groups created during grinding were neutralized, and the zeta potentials were corrected according to the procedure of O'Brien and White with an assumed average particle size of 0.25 μm. When the zeta potentials of positively charged particles were corrected in this way, agreement with values calculated from force measurements was also improved.

Резюме

Резюме

Измерения мобильности были сделаны на сухо-растертых частицах слюды, диспергированных в водных растворах KCl, Cr(NO3)3 и цетилтриметиламмиачного бромида (ЦТАБ). В последних растворах реверсирование заряда происходило при концентрациях 2 × 10-6 M и 3 × 10-5 М, соответственно. Отрицательные зета потенциалы в растворе KCl, вычисленные по уравнению Смолуговского, равны примерно одной трети соответствующих величин, полученных из текущих потенциалов и силовых измерений, используя пластинки слюды. Хорошее соответствие, однако, получалось, когда положительно заряженные группы, образованные в течение растирания, нейтрализовались, а потенциалы зета корректировались соответственно при помощи процедуры О’Браяна и Уайта, предполагая средний размер частиц равен 0,25 μm. После коррекции потенциалов зета положительно заряженных частиц при помощи этого метода, также улучшилось согласие с величинами, полученными по измерениям силы. [E.G.]

Resümee

Resümee

Mobilitätsmessungen wurden an trocken gemahlenen Glimmerpartikeln durchgeführt, die in wässrigen KCl-, Cr(NO3)3-, und Cetyltrimethylammoniumbromid-Lösungen (C.TAB) dispergiert waren. In den letzteren Lösungen trat bei etwa 2 ×10−6 m bzw. 3 × 10−5 m, Ladungsumkehr auf. Negative Zeta-Potentiale in den KCl-Lösungen, die mit der Smoluchowski-Gleichung berechnet wurden, betragen etwa der entsprechenden Werte, die aus den Strömungspotentialen und Kraftmessungen unter Verwendung von Glimmerblättchen erhalten wurden. Eine gute Übereinstimmung wurde jedoch erreicht, wenn man positiv geladene Gruppen, die während des Mahlens entstanden sind, neutralisierte, und die Zetapotentiale nach der Methode von O'Brien und White korrigierte unter der Annahme, daß die durchschnittliche Partikelgröße 0,25 μm beträgt. Wenn die Potentiale der positiv geladenen Teilchen auf diese Art korrigiert wurden, dann wurde auch die Übereinstimmung mit den aus den Kraftmessungen berechneten Werten verbessert. [U.W.]

Résumé

Résumé

On a mesuré la mobilité de particules de mica moulues-sèches dispersées dans du KCl aqueux et dans des solutions de Cr(NO3)3, et de bromide cétyltriméthylammonium (C.TAB). Dans ces dernières solutions, le renversement de charge s'est produit à à peu près 2 × 10−6 M, respectivement. Les potentiels zéta négatifs dans des solutions KO calculés en employant l’équation Smoluchowski sont approximativement un tiers des valeurs correspondantes obtenues de potentiels coulants et de mesures de force utilisant des feuilles de mica. On a cependant obtenu un bon accord lorsque des groupes chargés positivement crées lors du broyage ont été neutralisés et les potentiels zéta ont été corrigés selon le procédé d'O Brien et White avec une taille de particule moyenne de 0,25 μm. Lorsque les potentiels zéta de particules chargées étaient corrigés de cette manière, l'accord avec des valeurs calculées à partir de mesures de force a été amélioré. [D.J.]

Type
Research Article
Copyright
Copyright © 1985, The Clay Minerals Society

References

Berne, B. J. and Pecora, R., 1976 Dynamic Light Scattering 143144.Google Scholar
Bolt, G. H. and Wakentin, B. P., 1958 The negative adsorption of anions from clay suspensions Colloids 156 4146.Google Scholar
Callaghan, I. C. and Ottewill, R. H., 1974 Interparticulate forces in montmorillonite gels Farad. Disc. Chem. No 57 110118.CrossRefGoogle Scholar
Chan, D. Y. C., Pashley, R. M. and Quirk, J. P., 1984 Surface potentials derived from co-ion exclusion measurements on homonionic montmorillonite and illite Clays & Clay Minerals 32 131138.CrossRefGoogle Scholar
Donners, W BA, Rinjbout, J. B. and Vrij, A., 1977 Light scattering from soap films J. Colloid Interface Sci 61 249260.CrossRefGoogle Scholar
Friend, J. P. and Hunter, R.J., 1970 Vermiculite as a model system in the testing of double-layer theory Clays & Clay Minerals 18 275283.CrossRefGoogle Scholar
Gaines, G. L., 1957 The ion-exchange properties of muscovite mica J. Phys. Chem 61 14081413.CrossRefGoogle Scholar
Gaines, G. L. and Tabor, D., 1956 Surface adhesion and elastic properties of mica Nature 178 13041305.CrossRefGoogle Scholar
Goulding, K. W. T. and Talibudeen, O., 1980 Heterogeneity of cation-exchange sites for K-Ca exchange in aluminosilicates J. Colloid Interface Sci 78 1524.CrossRefGoogle Scholar
Israelachvili, J. N. and Adams, G. E., 1978 Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm J. Chem. Soc. Faraday Trans. I 74 9751001.CrossRefGoogle Scholar
Leiner, W., 1973 Bestimmung der Bindungsenergien der K+-Ionen in der Spaltflache von Muskovit aus elektrokinetischen Daten 6th Int. Congress on Surface Active Substances, Stuttgart, Germany, 1972 4554.Google Scholar
Low, P. F., 1981 The swelling of clay: III J. Soil Sci. Soc. Amer 45 10741078.CrossRefGoogle Scholar
Lyons, J. S., Furlong, D. N. and Healy, T. W., 1981 The electrical double-layer properties of the mica (muscovite)-aqueous electrolyte interface Aus. J. Chem 34 11771187.CrossRefGoogle Scholar
Mokma, D. L., Syers, J. K. and Jackson, M. L., 1970 Cation exchange capacity and weathering of muscovite macroflakes Soil Sci. Soc. Amer. Proc 34 146151.CrossRefGoogle Scholar
Norrish, K., Rausell-Colom, J. A., Swineford, A. and Franks, P. C., 1963 Low angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite Clays and Clay Minerals, Proc. 10th Natl. Conf, Austin, Texas, 1961 New York Pergamon Press 123490.Google Scholar
O’Brien, R. W. and White, L. T., 1978 Electrophoretic mobility of a spherical colloidal particle J. Chem. Soc., Faraday II 74 16071626.CrossRefGoogle Scholar
O’Connor, D. J. and Saunders, J. V., 1956 Hydrophobic monolayers on platinum, mica, and silica J. Colloid Sci 11 158166.CrossRefGoogle Scholar
Pashley, R. M., 1981 DLVO and hydration forces between mica surfaces in Li+, Na+, K+ and Cs+ electrolyte solutions J. Colloid Interface Sci 83 531546.CrossRefGoogle Scholar
Pashley, R. M., 1981 Hydration forces between mica surfaces in aqueous electrolyte solutions J. Colloid Interface Sci 80 153162.CrossRefGoogle Scholar
Pashley, R. M., 1984 Forces between mica surfaces in La3+ and Cr3+ electrolyte solutions J. Colloid Interface Sci .CrossRefGoogle Scholar
Pashley, R. M. and Israelachvili, J. N., 1981 A comparison of surface forces and interfacial properties of mica in purified surfactant solutions Colloids and Surfaces 2 169187.CrossRefGoogle Scholar
Pashley, R. M. and Quirk, J. P., 1984 The effect of cation valency on DLVO and hydration forces between macroscopic sheets of muscovite mica in relation to clay swelling Colloids and Surfaces 9 117.CrossRefGoogle Scholar
Viani, B. E., Low, P. F. and Roth, C. B., 1983 Direct measurement of the relation between interlayer force and interlayer distance in the swelling of montmorillonite J. Colloid Interface Sci 96 229244.CrossRefGoogle Scholar