Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-06T06:54:13.208Z Has data issue: false hasContentIssue false

Efficacy of Two Texas Bentonites in Binding Aflatoxin B1 and in Reducing Aflatoxicosis in Broilers

Published online by Cambridge University Press:  01 January 2024

Ana Luisa Barrientos-Velazquez
Affiliation:
Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
Radhika Kakani
Affiliation:
Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
Justin Fowler
Affiliation:
Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
Akram-ul Haq
Affiliation:
Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
Christopher A. Bailey
Affiliation:
Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA
Youjun Deng*
Affiliation:
Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA

Abstract

The incorporation of bentonites in aflatoxin-contaminated animal feeds to remedy aflatoxicosis has been tested widely in animal trials. Yet, a large variation in efficacy among samples has been observed which has been attributed to variations in the properties of the clay mineral adsorbents. The objectives of the current study were: (1) to evaluate the mineral and chemical composition of two selected bentonites to find minerals or elements which are potentially of concern; (2) to characterize the aflatoxin B1 (AfB1) adsorption (selectivity, capacity, reversibility, and interlayer accessibility) by the bentonites; and (3) to evaluate the safety and efficacy of selected clays as amendments of aflatoxin-contaminated feed for broiler chickens. The mineral, chemical, and exchange cation composition of the clays were analyzed, and they appeared to be safe for use in feed. The bentonites and their fractions showed that adsorption capacities range from 0.48 to 0.97 mol/kg. The interlayer spaces of both montmorillonites were accessible by AfB1, and the adsorption was irreversible. Three-day old broiler chickens were given clean and high-aflatoxin-concentration (1400 mg/kg) diets with and without the presence of the two bentonites. After three weeks the chickens were sacrificed and biomarkers were evaluated. The presence of aflatoxins reduced the body weight by 58% and resulted in a 25% mortality rate. Adding bentonites 1TX and 4TX increased the body weight of the chickens by 14 and 23%, respectively, but did not improve the mortality rates. The results suggested that selected bentonites could effectively sequester aflatoxins in vivo but did not eliminate the total toxicity present in highly contaminated poultry feed.

Type
Original Paper
Copyright
Copyright © The Author(s), under exclusive licence to The Clay Minerals Society 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aletor, V. A., Kasali, O. B., & Fetuga, B. L. (1981). Effects of sublethal levels of dietary aflatoxins in broiler chickens. Zentralblatt fuer Veterinaermedizin. Reihe A, 28(9-10), 774781.CrossRefGoogle Scholar
Bailey, C. A., Latimer, G. W., Barr, A. C., Wigle, W. L., Haq, A. U., Balthrop, J. E., & Kubena, L. F. (2006). Efficacy of montmorillonite clay (NovaSil PLUS) for protecting full-term broilers from aflatoxicosis. Journal of Applied Poultry Research, 15(2), 198206.CrossRefGoogle Scholar
Bailey, R. H., Kubena, L. F., Harvey, R. B., Buckley, S. A., & Rottinghaus, G. E. (1998). Efficacy of various inorganic sorbents to reduce the toxicity of aflatoxin and T-2 toxin in broiler chickens. Poultry Science, 77(11), 16231630.CrossRefGoogle ScholarPubMed
Barrientos Velazquez, A. L. (2011). Texas Bentonites as Amendments of Aflatoxin-Contaminated Poultry Feed. Master's thesis. Texas A&M University, Texas, USA.Google Scholar
Barrientos-Velazquez, A. L., & Deng, Y. (2020). Reducing competition of pepsin in aflatoxin adsorption by modifying a smectite with organic nutrients. Toxins, 12(1), 21.CrossRefGoogle ScholarPubMed
Barrientos-Velazquez, A. L., Arteaga, S., Dixon, J. B., & Deng, Y. (2016a). The effects of pH, pepsin, exchange cation, and vitamins on aflatoxin adsorption on smectite in simulated gastric fluids. Applied Clay Science, 120, 1723.CrossRefGoogle Scholar
Barrientos-Velazquez, A. L., Marroquin Cardona, A., Liu, L., Phillips, T., & Deng, Y. (2016b). Influence of layer charge origin and layer charge density of smectites on their aflatoxin adsorption. Applied Clay Science, 132–133, 281289.CrossRefGoogle Scholar
Dakovic, A., Tomasevic-Canovic, M., Dondur, V., Vujakovic, A., & Radosevic, P. (2000). Kinetics of aflatoxin B1 and G2 adsorption on Ca-clinoptilolite. Journal of the Serbian Chemical Society, 65(10), 715723.CrossRefGoogle Scholar
Deng, Y., Liu, L., Luisa Barrientos Velazquez, A., & Dixon, J. B. (2012). The determinative role of the exchange cation and layer-charge density of smectite on aflatoxin adsorption. Clays and Clay Minerals, 60(4), 374386.CrossRefGoogle Scholar
Deng, Y., & Szczerba, M. (2011). Computational evaluation of bonding between aflatoxin B1 and smectite. Applied Clay Science, 54, 2633.CrossRefGoogle Scholar
Deng, Y., Velázquez, A. L. B., Billes, F., & Dixon, J. B. (2010). Bonding mechanisms between aflatoxin B1 and smectite. Applied Clay Science, 50(1), 9298.CrossRefGoogle Scholar
Deng, Y., White, G. N., & Dixon, J. B. (2013). Soil mineralogy laboratory manual. Texas A&M University.Google Scholar
Elliott, C., Connolly, L., & Kolawole, O. (2020). Potential adverse effects on animal health and performance caused by the addition of mineral adsorbents to feeds to reduce mycotoxin exposure. Mycotoxin Research, 36, 115126.CrossRefGoogle ScholarPubMed
Ewing, W., & Charlton, S. (2005). The mineral directory. Context publications.Google Scholar
Fowler, J., Hashim, M., Barrientos-Velazquez, A., Deng, Y., & Bailey, C. A. (2014). Utilization of a spray-applied calcium bentonite clay to ameliorate the effects of low-levels of aflatoxinin starter broiler diets containing DDGS. Natural Products Chemistry & Research, 2, 14.Google Scholar
Gates, W. P. (2005). Infrared spectroscopy and the chemistry of dioctahedral smectites. In Kloprogge, I. (Ed.), Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides (pp. 125168). The Clay Minerals Society.Google Scholar
Georgievski, V. I. (1982). Mineral Feeding of Poultry. In Georgievski, V. I., Annenhov, B. N., Samokhin, V. T., & Ifis, (Eds.), Mineral Nutrition of Animals (pp. 417418). Amsell Bookbinders Ltd..Google Scholar
Huff, W. E., Kubena, L. F., Harvey, R. B., & Phillips, T. D. (1992). Efficacy of hydrated sodium calcium aluminosilicate to reduce the individual and combined toxicity of aflatoxin and ochratoxin-A. Poultry Science, 71(1), 6469.CrossRefGoogle ScholarPubMed
Kannewischer, I., Arvide, M. G. T., White, G. N., & Dixon, J. B. (2006). Smectite clays as adsorbents of aflatoxin B1: initial steps. Clay Science, 12(Supplement 2), 199204.Google Scholar
Katsoulos, P. D., Karatzia, M. A., Boscos, C., Wolf, P., & Karatzias, H. (2016). In-field evaluation of clinoptilolite feeding efficacy on the reduction of milk aflatoxin M1 concentration in dairy cattle. Journal of Animal Science and Technology., 58, 24.CrossRefGoogle ScholarPubMed
Kraljević Pavelić, S., Simović Medica, J., Gumbarević, D., Filošević, A., Pržulj, N., & Pavelić, K. (2018). Critical review on zeolite clinoptilolite safety and medical applications in vivo. Frontiers in Pharmacology, 9, 1350.CrossRefGoogle ScholarPubMed
Kubena, L. F., Harvey, R. B., Huff, W. E., & Corrier, D. E. (1990). Efficacy of a hydrated sodium calcium aluminosilicate to reduce the toxicity of aflatoxin and T-2 toxin. Poultry Science, 69, 10781086.CrossRefGoogle ScholarPubMed
Kubena, L. F., Harvey, R. B., Huff, W. E., Elissalde, M. H., Yersin, A. G., Phillips, T. D., & Rottinghaus, G. E. (1993). Efficacy of hydrated sodium calcium aluminosilicate to reduce the toxicity of aflatoxin and daicetoxyscirpenol. Poultry Science, 72, 5159.CrossRefGoogle Scholar
Kunze, G. W., & Dixon, J. B. (1986). Pretreatment for mineralogy analysis. In Klute, A. (Ed.), Methods of Soil Analysis Part 1: Physical and Mineralogical Methods (Vol. 2nd, pp. 91100). Soil Science Society of America, Inc.Google Scholar
Leeson, S., Diaz, G., & Summers, J. D. (1995). Poultry metabolic disorders and mycotoxins. University Books.Google Scholar
Lindemann, M. D., Blodgett, D. J., Kornegay, E. T., & Schurig, G. G. (1993). Potential ameliorators of aflatoxicosis in weanling growing swine. Journal of Animal Science, 71(1), 171178.CrossRefGoogle ScholarPubMed
Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational Spectroscopy, 31(1), 110.CrossRefGoogle Scholar
Madejová, J., Gates, W. P., & Petit, S. (2017). Chapter 5 - IR spectra of clay minerals. In Gates, W. P., Kloprogge, J. T., Madejová, J., & Bergaya, F. (Eds.), (Vol. 8, pp. 107149). Elsevier. https://doi.org/10.1016/B978-0-08-100355-8.00005-9Google Scholar
Madejová, J., & Komadel, P. (2001). Baseline studies of the Clay Minerals Society source clays: infrared methods. Clays and Clay Minerals, 49(5), 410432.CrossRefGoogle Scholar
Maki, C. R., Thomas, A. D., Elmore, S. E., Romoser, A. A., Harvey, R. B., Ramirez-Ramirez, H. A., & Phillips, T. D. (2015). Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. Journal of Dairy Science, 99(2), 10391046.CrossRefGoogle ScholarPubMed
Miazzo, R., Peralta, M. F., Magnoli, C., Salvano, M., Ferrero, S., Chiacchiera, S. M., & Dalcero, A. (2005). Efficacy of sodium bentonite as a detoxifier of broiler feed contaminated with aflatoxin and fumonisin. Poultry Science, 84(1), 18.CrossRefGoogle ScholarPubMed
National Research Council, Committee on Minerals and Toxic Substances in Diets and Water for Animals, Board on Agriculture and Natural Resources & Division on Earth and Life Studies (2005). Mineral Tolerance of Animals. National Academies Press, Washington, D.C.Google Scholar
Oguz, H., Kececi, T., Birdane, Y. O., Onder, F., & Kurtoglu, V. (2000). Effect of clinoptilolite on serum biochemical and haematological characters of broiler chickens during aflatoxicosis. Research in Veterinary Science, 69(1), 8993.CrossRefGoogle ScholarPubMed
OTSC. (2011). Aflatoxin in Feeds (corn and Cottonseed Meal Products) by HPLC/PHRED.Google Scholar
Pais, I., & Jones, J. (1997). The Handbook of Trace Minerals. S. Lucie Press.Google Scholar
Phillips, T. D., & Carpenter, R. H. (2008). Composition comprising calcium aluminosilicate clay and methods for the enterosorption and management of toxins (US Patent No. 2007-821982 2008008763).Google Scholar
Phillips, T. D., Clement, B. A., & Park, D. L. (1994). Approaches to reduction of aflatoxins in foods and feeds. In Eaton, D. L. (Ed.), The toxicology of aflatoxins (pp. 383399). Academic Press, Inc.CrossRefGoogle Scholar
Phillips, T. D., Kubena, L. F., Harvey, R. B., Taylor, D. R., & Heidelbaugh, N. D. (1987). Mycotoxin hazards in agriculture: new approach to control. Journal of Animal Veterinary Medicine, 190, 16171618.Google Scholar
Phillips, T. D., Kubena, L. F., Harvey, R. B., Taylor, D. R., & Heidelbaugh, N. D. (1988). Hydrated sodium calcium aluminosilicate: a high affinity sorbent for aflatoxin. Poultry Science, 67, 243247.CrossRefGoogle ScholarPubMed
Phillips, T. D., Sarr, A. B., & Grant, P. G. (1995). Selective chemisorption and detoxification of aflatoxins by phyllosilicate clay. Natural Toxins, 3, 204213.CrossRefGoogle ScholarPubMed
Phillips, T. D., Wang, M., Elmore, S. E., Hearon, S., & Wang, J. S. (2019). NovaSil clay for the protection of humans and animals from aflatoxins and other contaminants. Clays and Clay Minerals, 67(1), 99110. https://doi.org/10.1007/s42860-019-0008-xCrossRefGoogle ScholarPubMed
Pimpukdee, K., Kubena, L. F., Bailey, C. A., Huebner, H. J., Afriyie-Gyawu, E., & Phillips, T. D. (2004). Aflatoxin-induced toxicity and depletion of hepatic vitamin A in young broiler chicks: protection of chicks in the presence of low levels of NovaSil PLUS in the diet. Poultry Science, 83(5), 737744.CrossRefGoogle ScholarPubMed
Quezada, T., Cuéllar, H., Jaramillo-Juárez, F., Valdivia, A. G., & Reyes, J. L. (2000). Effects of aflatoxin B1 on the liver and kidney of broiler chickens during development. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 125(3), 265272.Google ScholarPubMed
Quisenberry, J. H. (1968). The Use of Clay in Poultry Feed. Clay and Clay Minerals, 16, 267270.CrossRefGoogle Scholar
Ramos, A. J., & Hernandez, E. (1996). In vitro aflatoxin adsorption by means of a montmorillonite silicate. A study of adsorption isotherms. Animal Feed Science and Technology, 62(2-4), 263269.CrossRefGoogle Scholar
Reyes, C., Gutiéttez, M., & Joya, S. (2020). The importance of minerals in medical geology: Impacts of the environment on health. Archivos de Medicina (Manizales)., 21, 182202.Google Scholar
Rosa, C. A., Miazzo, R., Magnoli, C., Salvano, M., Chiacchiera, S. M., Ferrero, S., & Dalcero, A. (2001). Evaluation of the efficacy of bentonite from the south of Argentina to ameliorate the toxic effects of aflatoxin in broilers. Poultry Science, 80(2), 139144.CrossRefGoogle ScholarPubMed
Schulthess, C. P., & Dey, D. K. (1996). Estimation of Langmuir constants using linear and nonlinear least squares regression analyses. Soil Science Society of America Journal, 60, 433442.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B., Hossner, L. R., Abder-Ruhman, M., & Fanning, D. S. (1984). Mineralogy and genetic relationships of tonstein, bentonite, and lignitic strata in the Eocene Yegua Formation of East-Central Texas. Clays and Clay Minerals, 32, 259271.CrossRefGoogle Scholar
Soil Survey Staff (2004). Soil Survey laboratory methods manual. Soil Survey Investigation Report No. 42. USDA, NRCS, Lincoln, NE.Google Scholar
Tenorio Arvide, M. G., Mulder, I., Barrientos Velazquez, A. L., & Dixon, J. B. (2008). Smectite clay adsorption of aflatoxin vs. octahedral composition as indicated by FTIR. Clays and Clay Minerals, 56, 571578.CrossRefGoogle Scholar
Tessari, E. N. C., Oliveira, C. A. F., Cardoso, A. L. S. P., Ledoux, D. R., & Rottinghaus, G. E. (2006). Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. British Poultry Science, 47(3), 357364.CrossRefGoogle ScholarPubMed
Thieu, N., & Pettersson, H. (2008). Evaluation of the capacity of zeolite and bentonite to adsorb aflatoxin in simulated gastrointestinal fluids. Mycotoxin Research, 24(3), 124129.CrossRefGoogle ScholarPubMed
Tomasevic-Canovic, M., Dakovic, A., Markovic, V., & Stojsic, D. (2001). The effect of exchangeable cations in clinoptilolite and montmorillonite on the adsorption of aflatoxin B1. Journal of the Serbian Chemical Society, 66(8), 555561.CrossRefGoogle Scholar