Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T10:40:04.692Z Has data issue: false hasContentIssue false

Effects of Ethylene Glycol Saturation Protocols on XRD Patterns: A Critical Review and Discussion

Published online by Cambridge University Press:  01 January 2024

Regine Mosser-Ruck*
Affiliation:
UMR CNRS 7566 G2R, UHP, BP 239, 54506 Vandœuvre-lès-Nancy, France
Karine Devineau
Affiliation:
UMR CNRS 7569 LEM, INPL, BP 40, 54501 Vandœuvre-lès-Nancy, France
Delphine Charpentier
Affiliation:
UMR CNRS 7566 G2R, UHP, BP 239, 54506 Vandœuvre-lès-Nancy, France
Michel Cathelineau
Affiliation:
UMR CNRS 7566 G2R, UHP, BP 239, 54506 Vandœuvre-lès-Nancy, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Study of the transformation of smectite to illite, chlorite or vermiculite via interstratified clay minerals needs precise qualitative and quantitative determinations of the different layers in the mixed-layer clays and is generally based on X-ray diffraction (XRD) patterns after specific treatments of the clay samples. Saturation with K or Mg followed by ethylene glycol (EG) solvation are classical methods used to identify high-charge smectite and vermiculite. These procedures have been applied to two experimental clays, one composed of smectite layers and the second, a mixture of vermiculite and smectite layers. Different methods of glycolation (EG vapor or liquid EG) produce significant differences in the XRD patterns. Comparison with literature data indicates that K-saturated, high-charge smectite (≈0.8 < total charge <1/unit-cell) and Mg-vermiculite (whatever its charge) do not expand in ethylene glycol vapor (d values ≈14–15 Å). Expansion to 17 Å in liquid ethylene glycol occurs for Mg-vermiculite with a total charge of <~1.2/unit-cell and for K-saturated, high-charge smectite, when the tetrahedral charge is <≈0.7/unit-cell. This study shows that: (1) glycolation procedures need to be standardized; (2) the use of saturation protocols using both liquid ethylene glycol and ethylene glycol vapor yields useful additional information about the distribution of charges in clay minerals.

Type
Research Article
Copyright
Copyright © 2005, The Clay Minerals Society

References

Barshad, I., (1950) The effect of interlayer cations on the expansion of the mica type crystal lattice American Mineralogist 35 225238.Google Scholar
Beaufort, D. Berger, G. Lacharpagne, J.C. and Meunier, A., (2001) An experimental alteration of montmorillonite to a ditrioctahedral smectite assemblage at 100 and 200°C Clay Minerals 36 211225 10.1180/000985501750177942.CrossRefGoogle Scholar
Berend, I. Cases, J.M. Francois, M. Uriot, J.P. Michot, L. Masion, A. and Thomas, F., (1995) Mechanisms of adsorption and desorption of water vapor by homoionic montmor-illonites: 2. The Li+, Na+, Rb+, and Cs+-exchanged forms Clays and Clay Minerals 43 324336 10.1346/CCMN.1995.0430307.CrossRefGoogle Scholar
Bish, D.L. and Aronson, J.L., (1993) Paleogeothermal and paleohydrologic conditions in silicic tuff from Yucca Montain, Nevada Clays and Clay Minerals 41 148161 10.1346/CCMN.1993.0410204.CrossRefGoogle Scholar
Bouchet, A. Proust, D. Meunier, A. and Beaufort, D., (1988) High-charge to low-charge smectite reaction in hydrothermal alteration processes Clay Minerals 23 133146 10.1180/claymin.1988.023.2.02.CrossRefGoogle Scholar
Bouchet, A., Meunier, A. and Sardini, P. (2000) Minéraux argileux: structure cristalline, identification par diffraction des rayons X. Bulletin du Centre de Recherche Elf Exploration et Production, 23, 136 pp.Google Scholar
Bradley, W.F., (1945) Molecular association between montmorillonite and some polyfunctional organic liquids Journal of the American Chemical Society 67 975981 10.1021/ja01222a028.CrossRefGoogle Scholar
Brindley, G.W., (1966) Ethylene glycol and glycerol complexes of smectite and vermiculites Clay Minerals 6 237259 10.1180/claymin.1966.006.4.01.CrossRefGoogle Scholar
Brindley, G.W. and Ertem, G., (1971) Preparation and solvation properties of some variable charge montmorillonites Clays and Clay Minerals 19 399404 10.1346/CCMN.1971.0190608.CrossRefGoogle Scholar
Brown, G. and Farrow, R., (1956) Introduction of glycerol into flakes aggregates by vapour pressure Clay Minerals Bulletin 3 4445 10.1180/claymin.1956.003.15.13.CrossRefGoogle Scholar
Brunton, G., (1955) Vapour glycolation American Mineralogist 40 124126.Google Scholar
Charpentier, D. Devineau, K. Mosser-Ruck, R. Cathelineau, M. and Villiéras, F., (2006) Bentonite-iron interactions under alkaline condition: an experimental approach Applied Clay Science .CrossRefGoogle Scholar
Dyal, R.S. and Hendricks, S.B., (1952) Formation of mixed layer minerals by potassium fixation in montmorillonite Proceedings of the Soil Science Society of America 16 4548 10.2136/sssaj1952.03615995001600010014x.CrossRefGoogle Scholar
Guillaume, D. Neaman, A. Cathelineau, M. Mosser-Ruck, R. Peiffert, C. Abdelmoula, M. Dubessy, J. Villiéras, F. and Michau, N., (2004) Experimental study of the transformation of smectite at 80 and 300°C in the presence of Fe oxides Clay Minerals 39 1734 10.1180/0009855043910117.CrossRefGoogle Scholar
Harward, M.E. and Brindley, G.W., (1965) Swelling properties of synthetic smectite in relation to lattice substitutions Clays and Clay Minerals 13 209222 10.1346/CCMN.1964.0130121.CrossRefGoogle Scholar
Harward, M.E. Carstea, D.D. and Sayegh, A.H., (1969) Properties of vermiculite and smectites: Expansion and collapse Clays and Clay Minerals 16 437447 10.1346/CCMN.1969.0160605.CrossRefGoogle Scholar
Holtzapffel, T. (1985) Les minéraux argileux. Préparation. Analyse diffractométrique et détermination. Société Géologique du Nord, 12, 136 pp.Google Scholar
Howard, J.J., (1981) Lithium and potassium saturation of illite/ smectite clays from interlaminated shales and sandstones Clays and Clay Minerals 29 136142 10.1346/CCMN.1981.0290208.CrossRefGoogle Scholar
Howard, J.J. and Roy, D.M., (1985) Development of layer charge and kinetics of experimental smectite alteration Clays and Clay Minerals 33 8188 10.1346/CCMN.1985.0330201.CrossRefGoogle Scholar
Huang, W.L. Longo, J.M. and Pevear, D.R., (1993) An experimental derived kinetic model for smectite-to-illite conversion and its use as a geothermometer Clays and Clay Minerals 41 162177 10.1346/CCMN.1993.0410205.CrossRefGoogle Scholar
Inoue, A. Bouchet, A. Velde, B. and Meunier, A., (1989) Convenient technique for estimating smectite layer percentage in randomly interstratified illite/smectite minerals Clays and Clay Minerals 37 227234 10.1346/CCMN.1989.0370305.CrossRefGoogle Scholar
Kunze, G.W., (1955) Anomalies in the ethylene glycol solvation technique used in X-ray diffraction Clays and Clay Minerals 3 8393.Google Scholar
Lanson, B. and Besson, G., (1992) Characterization of the end of smectite-to-illite transformation: Decomposition of X-ray patterns Clays and Clay Minerals 40 4052 10.1346/CCMN.1992.0400106.CrossRefGoogle Scholar
MacEwan, D.M.C., (1944) Identification of the montmorillonite group of minerals by X-rays Nature 154 577578 10.1038/154577b0.CrossRefGoogle Scholar
MacEwan, D.M.C., (1946) The identification and estimation of the montmorillonite group of minerals, with special reference to soil clays Journal of the Society of Chemical Industry 65 298304 10.1002/jctb.5000651005.CrossRefGoogle Scholar
MacEwan, D.M.C., (1948) Complexes of clays with organic compounds. I. Complex formation between montmorillonite and halloysite and certain organic liquids Transactions of the Faraday Society 44 349367 10.1039/tf9484400349.CrossRefGoogle Scholar
Mosser-Ruck, R. and Cathelineau, M., (2004) Experimental transformation of Na,Ca-smectite under basic conditions at 150°C Applied Clay Science 26 259273 10.1016/j.clay.2003.12.011.CrossRefGoogle Scholar
Price, K.L. and McDowell, S.D., (1993) Illite/smectite geothermometry of the Proterozoic Oronto group, mid-continent rift system Clays and Clay Minerals 41 134147 10.1346/CCMN.1993.0410203.CrossRefGoogle Scholar
Reynolds, R.C., (1965) An X-ray study of an ethylene glycol-montmorillonite complex American Mineralogist 50 9901001.Google Scholar
Righi, D. Räisänen, M.L. and Gillot, F., (1997) Clay mineral transformation in podzolized tills in central Finland Clay Minerals 32 531544 10.1180/claymin.1997.032.4.04.CrossRefGoogle Scholar
Sato, T. Watanabe, T. and Otsuka, R., (1992) Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites Clays and Clay Minerals 40 103113 10.1346/CCMN.1992.0400111.CrossRefGoogle Scholar
Sayegh, A.H. Harward, M.E. and Knox, E.G., (1965) Humidity and temperature interaction with respect to K-saturated expanding clay minerals American Mineralogist 50 490495.Google Scholar
Schultz, L.G., (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites Clays and Clay Minerals 17 115149 10.1346/CCMN.1969.0170302.CrossRefGoogle Scholar
Środoń, J., (1980) Precise identification of illite/smectite interstratification by X-ray powder diffraction Clay and Clay Minerals 28 401411 10.1346/CCMN.1980.0280601.CrossRefGoogle Scholar
Środoń, J. Morgan, D.J. Eslinger, E.V. Eberl, D.D. and Karlinger, M.R., (1986) Chemistry of illite/smectite and end-member illite Clays and Clay Minerals 34 368378 10.1346/CCMN.1986.0340403.CrossRefGoogle Scholar
Suquet, H. De la Calle, C. and Pezerat, H., (1975) Swelling and structural organization of saponite Clays and Clay Minerals 23 19 10.1346/CCMN.1975.0230101.CrossRefGoogle Scholar
Walker, G.F., (1957) On the differentiation of vermiculite and smectites in clays Clay Minerals Bulletin 3 154163 10.1180/claymin.1957.003.17.06.CrossRefGoogle Scholar
Walker, G.F., (1958) Reactions of expanding lattice clay minerals with glycerol and ethylene glycol Clay Minerals Bulletin 3 302313 10.1180/claymin.1958.003.20.05.CrossRefGoogle Scholar
Weir, A.H., (1960) Relationship between physical properties, structure and composition of smectite .Google Scholar
Whitney, G. and Velde, B., (1993) Changes in particle morphology during illitization: An experimental study Clays and Clay Minerals 41 209218 10.1346/CCMN.1993.0410209.CrossRefGoogle Scholar