Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T23:12:29.540Z Has data issue: false hasContentIssue false

The Effect of Grinding on the Structure and Behavior of Bentonites

Published online by Cambridge University Press:  01 July 2024

U. Mingelgrin
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet Dagan, Israel
L. Kliger
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet Dagan, Israel
M. Gal
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet Dagan, Israel
S. Saltzman
Affiliation:
Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, P.O.B. 6, Bet Dagan, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The structure and behavior of homoionic bentonites was markedly affected by a grinding procedure often applied to clays. The main changes observed on clay powders were the breakage of weakly bound large aggregates, the reduction in the tactoids’ thickness by delamination, the reduction in the plates’ area, and the formation of colloidal matter. The tendency of clays to form secondary aggregates in aqueous suspensions is probably due to the exposure of active broken edges following grinding.

The mild mechanical stress applied increased both the rate and the amounts of parathion sorbed by clays from an apolar solvent. The effect of grinding on parathion adsorption in aqueous clay suspensions seems to be a rate effect.

Резюме

Резюме

Процедура растирания, которой часто подвергаются глины, оказывала заметное влияние на структуру и поведение гомоионных бентонитов. Основными изменениями, которые наблюдались в порошках глин, было разрушение слабосвязанных больших агрегатов, уменьшение толщины тактоидов в результате расслаивания, уменьшение площади пластин и образование коллоидального вещества. Тенденция глин к образованию вторичных агрегатов в водных суспензиях возможно вызвана появлением после растирания обломанных активных граней.

Умеренное механическое сжатие увеличивает скорость адсорбции и количество адсорбированного глиной паратиона из неполярного растворителя.

Эффект растирания на адсорбцию паратиона в водных суспензиях глин заключается, повидимому, в изменении скорости адсорбции.

Kurzreferat

Kurzreferat

Die Struktur und das Verhalten von homoionischen Bentoniten war ausgesprochen beinflußt durch eine Vermahlmethode, die oft bei Tonerden angewendet wird. Die hauptsächlichen Veränderungen, die in den Tonpulvern sichtbar war, waren das Brechen von schwächlich gebundenen, großen Aggregaten, die Reduktion in der taktoiden Schicht durch Schichtenspaltung, die Re -duktion in der Plattenfläche und die Formation von kolloidem Material. Die Neigung von Tonerden, sekondäre Aggregate in wässrigen Suspensionen zu formen, geht wahrscheinlich darauf zurück, daß die aktiven, gebrochenen Ecken nach dem Vermählen entblößt sind. Wenn ein wenig mechanischer Druck angewen -det wird, nimmt sowohl die Geschwindigkeit, wie auch die Menge von Para-thion, die von Tonerden aus nicht-polaren Lösungsmitteln adsorbiert wird, zu. Der Effekt, den das Vermählen auf die Parathionadsorption in wässrigen Suspensionen ausübt, scheint ein Geschwindigkeitseffekt zu Scin.

Résumé

Résumé

La structure et le comportement de bentonites homoionigues sont profondément affectés par un procédé de broyage souvent appliqué aux argiles. Les changements principaux observés dans les poudres argileuses sont la brisure de larges aggrégats faiblement liés, la réduction d’épaisseur dans les tactoïdes par délamination, la réduction dans la région des plaques, et la formation de matière colloidale. La tendance des argiles à former des aggrégats secondaires dans les suspensions aqueuses est probablement due à l'exposition de bords actifs brisés après le broyage. La légère charge mécanique qui est appliquée fait croître à la fois la vitesse et les quantités de parathion adsorbées par les argiles d'un solvant apolaire. L'effet de broyage sur l'adsorption de parathion dans les suspensions aqueuses d'argiles semble être un effet de vitesse.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Footnotes

*

Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. 1977 series, No. 177E. This work was supported in part by the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel

References

Banin, A. and Lahav, N. (1968) Particle size and optical properties of montmorillonite in suspension: Isr. J. Chem. 6, 235250.CrossRefGoogle Scholar
Black, C. A. (1942) Phosphate fixation by kaolinite and other clays as affected by pH, phosphate concentration and time of contact: Soil Sci. Soc. Am. Proc. 7, 123133.CrossRefGoogle Scholar
Black, C. A., Evans, D. D., White, J. C., Ensminger, L. E. and Clark, F. E. (1965) Methods of Soil Analysis, Part 1, p. 751: Am. Soc. Agron. Inc., Madison, Wisconsin.CrossRefGoogle Scholar
Bowman, B. T. (1975) Effects of methods of clay preparation on subsequent adsorption of the insecticide fensulfathion: Can. J. Soil Sci. 55, 105110.CrossRefGoogle Scholar
Davey, B. G. and Low, P. F. (1971) Physico-chemical properties of sols and gels of Na-montmorillonite with and without adsorbed hydrous aluminum oxide: Soil Sci. Soc. Am. Proc. 35, 230236.CrossRefGoogle Scholar
Lahav, N. and Banin, A. (1968) Effect of various treatments on the optical properties of montmorillonite suspensions: Isr. J. Chem. 6, 285294.CrossRefGoogle Scholar
McKyes, E. and Yong, R. N. (1971) Three techniques for fabric viewing as applied to shear distortion of a clay: Clays & Clay Minerals 19, 289293.CrossRefGoogle Scholar
Martin, R. T. and Ladd, C. C. (1975) Fabric of consolidated kaolinite: Clays & Clay Minerals 23, 1725.CrossRefGoogle Scholar
Mills, A. C. and Biggar, J. W. (1969) Solubility-temperature effect on the adsorption of γ- and β-BHC from aqueous and hexane solutions by soil materials: Soil Sci. Soc. Am. Proc. 33, 210216.CrossRefGoogle Scholar
Russell, J. D. and Farmer, V. C. (1964) I.R. spectroscopy study of dehydration of montmorillonite and saponite: Clay Miner. Bull. 3, 443464.CrossRefGoogle Scholar
Saltzman, S. (1977) Sorption and nonbiological degradation of parathion in soils and clays: D.Sc. Thesis, University of Louvain, Belgium.Google Scholar
Saltzman, S. and Yariv, S. (1976) I.R. and X-ray study of parathion-montmorillonite sorption complexes: Soil Sci. Soc. Am. J. 40, 3438.CrossRefGoogle Scholar
Shainberg, I. and Otoh, H. (1968) Size and shape of montmorillonite particles saturated with Na/Ca ions (inferred from viscosity and optical measurements): Isr. J. Chem. 6, 251259.CrossRefGoogle Scholar
Yariv, S. (1975) I.R. study of grinding kaolinite with alkali metal chlorides: Powder Technol. 12, 131138.CrossRefGoogle Scholar
Yariv, S. and Shoval, S. (1975) The nature of the interaction between water molecules and kaolin-like layers in hydrated halloysite: Clays & Clay Minerals 23, 473474.CrossRefGoogle Scholar
Yariv, S. and Shoval, S. (1976) Interaction between alkali-halides and hydrated halloysite: Clays & Clay Minerals 24, 253261.CrossRefGoogle Scholar