Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T22:50:09.683Z Has data issue: false hasContentIssue false

Effect of Acid and Alkali Treatments on Surface Areas and Adsorption Energies of Selected Minerals

Published online by Cambridge University Press:  01 January 2024

Grzegorz Jozefaciuk*
Affiliation:
Institute of Agrophysics of Polish Academy of Sciences, Doswiadczalna 4 str., 20-290 Lublin, Poland
Grzegorz Bowanko
Affiliation:
Institute of Agrophysics of Polish Academy of Sciences, Doswiadczalna 4 str., 20-290 Lublin, Poland
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bentonite, biotite, illite, kaolin, vermiculite and zeolite were acidified or alkalized with hydrochloric acid or sodium hydroxide at concentrations of 0.1, 1.0 and 5.0 mole dm−3 at room temperature for two weeks. In acid treatments, dissolution of Al prevailed over Si and the opposite was observed in alkali treatments. The XRD patterns showed severe alteration of the crystal structure after acid treatments, whereas sharpening of the XRD peaks after alkali treatments was observed. Illite and kaolin were most resistant to acid attack. with a few exceptions, the surface areas of the minerals computed from both water and nitrogen adsorption isotherms increased with acid and alkali treatments. with increasing reagent concentration, the nitrogen surface area increased faster than the water surface area. well-defined trends were not noted in either changes of average water or nitrogen adsorption energies or in relative amounts of adsorption sites, indicating that the effects of acid and alkali attack are controlled by the individual character of the minerals.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Aranovich, G.L., (1992) The theory of polymolecular adsorption Langmuir 8 736739 10.1021/la00038a071.CrossRefGoogle Scholar
Baccouche, A. Srasra, E. and El Maaoui, M., (1998) Preparation of Na-P1 and sodalite octahydrate zeolites from interstratified illite-smectite Applied Clay Science 13 255273 10.1016/S0169-1317(98)00028-3.CrossRefGoogle Scholar
Balcı, S., (1999) Effect of heating and acid pre-treatment on pore size distribution of sepiolite Clay Minerals 34 647653 10.1180/000985599546406.CrossRefGoogle Scholar
Bandosz, T.J. Jagiello, J. Andersen, B. and Schwartz, J.A., (1992) Inverse gas chromatography study of modified smectite surfaces Clays and Clay Minerals 40 306310 10.1346/CCMN.1992.0400309.CrossRefGoogle Scholar
Bauer, A. and Velde, B., (1999) Smectite transformation in high molar KOH solutions Clay Minerals 34 259273 10.1180/000985599546226.CrossRefGoogle Scholar
Bergaya, F. and Lagaly, G., (2001) Surface modification of clay minerals Applied Clay Science 19 13 10.1016/S0169-1317(01)00063-1.CrossRefGoogle Scholar
Boyle, J.R. Voigt, G.K. and Sawhney, B.L., (1967) Biotite flakes: Alteration by chemical and biological treatment Science 155 193195 10.1126/science.155.3759.193.CrossRefGoogle ScholarPubMed
Breen, C. and Watson, R., (1998) Acid-activated organoclays: preparation, characterisation and catalytic activity of polycation-treated bentonites Applied Clay Science 12 479494 10.1016/S0169-1317(98)00006-4.CrossRefGoogle Scholar
Breen, C. Madejová, J. and Komadel, P., (1995) Correlation of catalytic activity with infra-red, 29Si MAS NMR and acidity data for HCl-treated fine fractions of montmorillonites Applied Clay Science 10 219230 10.1016/0169-1317(95)00024-X.CrossRefGoogle Scholar
Brown, D.R., (1994) Clays as catalysts and reagent supports Geologica Carpathica — Clays 45 45 56.Google Scholar
Brown, D. and Rhodes, C.N. (1995) Acid-treated and ion exchanged montmorillonite catalysts: dependence of activity on composition Pp. 189190 in: Clay and Clay Material Sciences, Proceedings of Euroclay’95, Leuwen (Elsen, A., Grobet, P., Keung, M., Lehman, H., Schoonheydt, R. and Toufar, H., editors).Google Scholar
Brunauer, S. Emmet, P.H. and Teller, E., (1938) Adsorption of gases in multimolecular layers Journal of American Chemical Society 60 309314 10.1021/ja01269a023.CrossRefGoogle Scholar
Cases, J.M. Berend, I. Francois, M. Uriot, J.P. Michot, L.J. and Thomas, F., (1997) Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 3. The Mg, Ca, Sr, and Ba exchanged forms Clays and Clay Minerals 45 822 10.1346/CCMN.1997.0450102.CrossRefGoogle Scholar
Cerofolini, G.F., (1974) Localized adsorption on heterogeneous surfaces Thin Solid Films 23 129152 10.1016/0040-6090(74)90235-1.CrossRefGoogle Scholar
Chermak, J.A. and Rimstidt, J.D., (1987) The hydrothermal transformation of kaolinite to muscovite/illlite Geochimica et Cosmochimica Acta 54 29792990 10.1016/0016-7037(90)90115-2.CrossRefGoogle Scholar
Christidis, G.E. Scott, P.W. and Dunham, A.C., (1997) Acid activation and bleaching capacity of bentonites from the islands of Milos and Chios, Aegean, Greece Applied Clay Science 12 329347 10.1016/S0169-1317(97)00017-3.CrossRefGoogle Scholar
de la Villa, R.V. Cuevas, J. Ramirez, S. and Leguey, S., (2001) Zeolite formation during the alkaline reaction of bentonite European Journal of Mineralogy 13 635644 10.1127/0935-1221/2001/0013-0635.CrossRefGoogle Scholar
Debicki, R., Filipek, T., Glinski, J. and Sikora, E., (1994) editors () Natural and anthropogenic causes and effects of soil acidification. Zeszyty Problemowe Postepow Nauk Rolniczych, 413, 1334.Google Scholar
Dekany, I. Turi, L. Fonseca, A. and Nagy, J.B., (1999) The structure of acid treated sepiolites: small-angle X-ray scattering and multi MAS-NMR investigations Applied Clay Science 14 141160 10.1016/S0169-1317(98)00056-8.CrossRefGoogle Scholar
Drief, A. Nieto, F. and Sanchez-Navas, A., (2001) Experimental clay-mineral formation from a subvolcanic rock by interaction with 1 mole dm−3 NaOH solution at room temperature Clays and Clay Minerals 49 92106 10.1346/CCMN.2001.0490108.CrossRefGoogle Scholar
Eberl, D.D. Velde, B. and McCormick, T., (1993) Synthesis of illite-smectite from smectite at earth surface temperatures and high pH Clay Minerals 28 4960 10.1180/claymin.1993.028.1.06.CrossRefGoogle Scholar
Fanning, D.S. Keramidas, V.Z. El-Desosky, M.A., Dixon, J.B. and Weed, S.B., (1989) Micas Minerals in Soil Environments 2nd Madison, Wisconsin Soil Science Society of America Pp. 527–634.Google Scholar
Filippidis, A. Godelitsas, A. Charistos, D. Misaelides, P. and Kassoli-Fournaraki, A., (1996) The chemical behavior of natural zeolites in aqueous environments: Interactions between low-silica zeolites and 1 mole dm−3 NaCl solutions of different initial pH-values Applied Clay Science 11 199209 10.1016/S0169-1317(96)00025-7.CrossRefGoogle Scholar
Frank, U. and Gebhardt, H., (1991) Weathering of silicates and destruction of clay minerals as a consequence of severe soil acidification in selected forest locations of Northern Germany Proceedings of the 14th International Congress of Soil Science, Kyoto VII 61 65.Google Scholar
Gregg, S.J. and Sing, K.S.W., (1967) Adsorption, Surface Area and Porosity London and New York Academic Press 10.1149/1.2426447.CrossRefGoogle Scholar
Hall, P.L. and Astill, D.M., (1989) Adsorption of water by homoionic exchange forms of Wyoming bentonite (Swy-1) Clays and Clay Minerals 37 355363 10.1346/CCMN.1989.0370409.CrossRefGoogle Scholar
Harris, L.B., (1968) Adsorption on a patchwise heterogeneous surface. I. Mathematical analysis of the step-function approximation of the local isotherm Surface Science 10 129145 10.1016/0039-6028(68)90015-0.CrossRefGoogle Scholar
Harris, L.B., (1969) Adsorption on a patchwise heterogeneous surface. III. Errors incurred in using the condensation approximation to estimate the energy distribution on a Hill-De Boer adsorbent Surface Science 15 182187 10.1016/0039-6028(69)90076-4.CrossRefGoogle Scholar
Huang, W.L., (1993) The formation of illitic clays from kaolinite in KOH solution from 225 to 350°C Clays and Clay Minerals 41 645654 10.1346/CCMN.1993.0410602.Google Scholar
Jackson, M.L. and Sherman, G.D., (1952) Chemical weathering of clay minerals in soils Advances in Agronomy 5 219318 10.1016/S0065-2113(08)60231-X.CrossRefGoogle Scholar
Jaroniec, M. and Brauer, P., (1986) Recent progress in determination of energetic heterogeneity of solids from adsorption data Surface Science Reports 6 65117 10.1016/0167-5729(86)90004-X.CrossRefGoogle Scholar
Jaroniec, M. Rudzinski, W. Sokolowski, S. and Smarzewski, R., (1975) Determination of energy distribution function from observed adsorption isotherms Journal of Colloid and Polymer Science 253 164166 10.1007/BF01775683.CrossRefGoogle Scholar
Jozefaciuk, G. and Shin, J.S., (1996) Water vapor adsorption on soils: II. Estimation of adsorption energy distributions using local BET and Aranovich isotherms Korean Journal of Soil Science and Fertilizer 29 218 225.Google Scholar
Jozefaciuk, G. Sokolowska, Z. Sokolowski, S. Alekseev, A. and Alekseeva, T., (1993) Changes of mineralogical and surface properties of water dispersible clay after acid treatment of soils Clay Minerals 28 145148 10.1180/claymin.1993.028.1.13.Google Scholar
Jozefaciuk, G. Hoffmann, C. Renger, M. and Marschner, B., (2000) Effect of extreme acid and alkali treatment on surface properties of soils Journal of Plant Nutrition and Soil Science 163 595601 10.1002/1522-2624(200012)163:6<595::AID-JPLN595>3.0.CO;2-H.3.0.CO;2-H>CrossRefGoogle Scholar
Keenan, A.G. Mooney, R.W. and Wood, L.A., (1951) The relation between exchangeable ions and water adsorption on kaolinite Journal of Physical Colloid Chemistry 55 14621474 10.1021/j150492a006.CrossRefGoogle Scholar
Komadel, P. Schmidt, D. Madejová, J. and Čičel, B., (1990) Alteration of smectites by treatments with hydrochloric acid and sodium carbonate solutions Applied Clay Science 5 113122 10.1016/0169-1317(90)90017-J.CrossRefGoogle Scholar
Kooyman, P.J. van der Waal, P. and Van Bekkum, H., (1997) Acid dealumination of ZSM-5 Zeolites 18 5053 10.1016/S0144-2449(96)00106-6.CrossRefGoogle Scholar
Kunze, G.W. and Black, C.A., (1965) Pretreatment for mineralogical analysis Soil Analysis. Part I Madison, Wisconsin American Society of Agronomy Pp. 568–577.Google Scholar
Low, P.F., (1961) Physical chemistry of clay-water interaction Advances in Agronomy 40 269327 10.1016/S0065-2113(08)60962-1.CrossRefGoogle Scholar
Madejová, J. Bujdak, J. Janek, M. and Komadel, P., (1998) Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hectorite Spectrochimica Acta A. Molecular and Biomolecular Spectroscopy 54 13971406 10.1016/S1386-1425(98)00040-7.CrossRefGoogle Scholar
Moise, J.C. Bellat, J.P. and Methivier, A., (2001) Adsorption of water vapor on X and Y zeolites exchanged with barium Microporous and Mesoporous Materials 43 91101 10.1016/S1387-1811(00)00352-8.CrossRefGoogle Scholar
Myriam, M., (1998) Structural and textural modifications of palygorskite and sepiolite under acid treatment Clays and Clay Minerals 46 225231 10.1346/CCMN.1998.0460301.CrossRefGoogle Scholar
Newman, A.C.D. (1985) The interaction of water with clay mineral surfaces. Pp. 237274 in: Chemistry of Clays and Clay Minerals (Newman, A.C.D., editor). Mineralogical Society Monograph 6. Longman Scientific and Technical, Harlow, Essex, UK.Google Scholar
Notario, J.S. Garcia, J.E. Caceres, J.M. Arteaga, I.J. and Gonzalez, M.M., (1995) Characterization of natural phillipsite modified with orthophosphoric acid Applied Clay Science 10 209217 10.1016/0169-1317(95)00025-Y.CrossRefGoogle Scholar
Petersen, L.W. Moldrup, P. Jacobsen, O.H. and Rolston, D.E., (1996) Relations between specific surface area and soil physical and chemical properties Soil Science 161 922 10.1097/00010694-199601000-00003.CrossRefGoogle Scholar
Rassineux, F. Griffault, L. Meunier, A. Berger, G. Petit, S. Vieillard, P. Zellagui, R. and Munoz, M., (2001) Expandability-layer stacking relationship during experimental alteration of a Wyoming bentonite in pH 13.5 solutions at 35 and 60°C Clay Minerals 36 197210 10.1180/000985501750177933.CrossRefGoogle Scholar
Ravichandran, J. and Sivasankar, B., (1997) Properties and catalytic activity of acid-modified montmorillonite and vermiculite Clays and Clay Minerals 45 854857 10.1346/CCMN.1997.0450609.CrossRefGoogle Scholar
Ruiz, R. Blanco, C. Pesquera, C. González, F. Benito, I. and Lσpez, J.L., (1997) Zeolitization of a bentonite and its application to the removal of ammonium ion from waste water Applied Clay Science 12 7383 10.1016/S0169-1317(96)00038-5.CrossRefGoogle Scholar
Rudzinski, W. and Everett, D.H., (1991) Adsorption of Gases on Heterogeneous Surfaces London Academic Press.Google Scholar
Rudzinski, W. Jagiello, J. and Grillet, Y., (1982) Physical adsorption of gases on heterogeneous solid surfaces: evaluation of the adsorption energy distribution from adsorption isotherms and heats of adsorption Journal of Colloid and Interface Science 87 478491 10.1016/0021-9797(82)90345-9.CrossRefGoogle Scholar
Rupert, J.P. Granquist, W.T. Pinnavaia, T.J. and Newman, A.C.D., (1987) Catalytic properties of clay minerals Chemistry of Clays and Clay Minerals Harlow, Essex Longman Scientific and Technical Pp. 237–274.Google Scholar
Sano, T. Uno, Y. Wang, Z.B. Ahn, C.H. and Soga, K., (1999) Realumination of dealuminated HZSM-5 zeolites by acid treatment and their catalytic properties Microporous and Mesoporous Materials 31 8995 10.1016/S1387-1811(99)00059-1.CrossRefGoogle Scholar
Schall, N. and Simmler-Hubenthal, H. (1995) Surface modifications of montmorillonite and resulting possibilities for use as an adsorbent. Pp. 2425 in: Clay and Clay Material Sciences, Proceedings of Euroclay’95, Leuven (Elsen, A., Grobet, P., Keung, M., Lehman, H., Schoonheydt, R. and Toufar, H., editors).Google Scholar
Shin-Jyung, K. and Kazuhiko, E., (1997) Modification of different grades of Korean natural zeolites for increasing cation exchange capacity Applied Clay Science 12 131144 10.1016/S0169-1317(97)00002-1.Google Scholar
Srasra, E. and Trabelsi-Ayedi, M., (2000) Textural properties of acid activated glauconite Applied Clay Science 17 7184 10.1016/S0169-1317(00)00008-9.CrossRefGoogle Scholar
Suárez Barrios, M. Flores González, L.V. Vicente Rodríguez, M.A. and Martín Pozas, J.M., (1995) Acid activation of a palygorskite with HCl: Development of physico-chemical, textural and surface properties Applied Clay Science 10 247258 10.1016/0169-1317(95)00007-Q.CrossRefGoogle Scholar
Suárez Barrios, M. de Santiago Buey, C. Garcia Romero, E. and Martin Pozas, J.M., (2001) Textural and structural modifications of saponite from Cerro del Aguila by acid treatment Clay Minerals 36 483488 10.1180/0009855013640003.CrossRefGoogle Scholar
Šucha, V. Środoń, J. Clauer, N. Elsass, F. Eberl, D.D. Kraus, I. and Madejová, J., (2001) Weathering of smectite and illite-smectite under temperate climatic conditions Clay Minerals 36 403419 10.1180/000985501750539490.CrossRefGoogle Scholar
Suraj, G. Iyer, C.S.P. and Lalithambika, M., (1998) Adsorption of cadmium and copper by modified kaolinites Applied Clay Science 13 293306 10.1016/S0169-1317(98)00043-X.CrossRefGoogle Scholar
Tanji, K.N., (1995) Agricultural Salinity Assessment and Management Jodphur, India Scientific Publishers.Google Scholar
Taubald, H. Bauer, A. Schäfer, T. Geckeis, H. Satir, M. and Kim, J.I., (2000) Experimental investigation of the effect of high-pH solutions on the Opalinus Shale and the Hammerschmiede Smectite Clay Minerals 35 515524 10.1180/000985500546981.CrossRefGoogle Scholar
Thomas, G.W. Hargrove, W.L. and Adams, F., (1984) The chemistry of soil acidity Soil Acidity and Liming 2nd Madison, Wisconsin American Society of Agronomy Pp. 3–56.Google Scholar
Thorez, G. (1976) Practical Identification of Clay Minerals. A Handbook. (Lelotte, G., editor). Liege State University, Belgium.Google Scholar
Tombacz, E. Szerkes, M. Baranyi, L. and Micheli, E., (1998) Surface modifications of clay minerals by organic polyions Colloids and Surfaces A: Physical and Engineering Aspects 141 379384 10.1016/S0927-7757(98)00241-6.CrossRefGoogle Scholar
Ulrich, B., Ulrich, B. and Sumner, M.E., (1990) An Ecosystem Approach to Soil Acidification Soil Acidity Pp. 28–79.Google Scholar
Van Olphen, H., (1977) An Introduction to Clay Colloid Chemistry 2 New York, London, Sydney, Toronto John Wiley & Sons.Google Scholar
Volzone, C. Thompson, J.G. Melnitchenko, A. Ortiga, J. and Palethorpe, S.R., (1999) Selective gas adsorption by amorphous clay-mineral derivatives Clays and Clay Minerals 5 647657 10.1346/CCMN.1999.0470511.CrossRefGoogle Scholar
Wallace, A., (1994) Soil acidification from use of too much fertilizers Communications in Soil Science and Plant Analysis 25 8792 10.1080/00103629409369010.CrossRefGoogle Scholar
Yatsu, E., (1988) The Nature of Weathering. An Introduction Tokyo Sozosha.Google Scholar
Ylagan, R.F. Altaner, S.P. and Pozzuoli, A., (2000) Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza Island, Italy Clays and Clay Minerals 48 610631 10.1346/CCMN.2000.0480603.CrossRefGoogle Scholar