Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-18T15:47:48.844Z Has data issue: false hasContentIssue false

Effect of a Thermal Gradient on Iron-Clay Interactions

Published online by Cambridge University Press:  01 January 2024

Marie-Camille Jodin-Caumon*
Affiliation:
G2R, Nancy-Université, CNRS, BP 70239, 54506 Vandœuvre-lès-Nancy, France
Regine Mosser-Ruck
Affiliation:
G2R, Nancy-Université, CNRS, BP 70239, 54506 Vandœuvre-lès-Nancy, France
Davy Rousset
Affiliation:
G2R, Nancy-Université, CNRS, BP 70239, 54506 Vandœuvre-lès-Nancy, France
Aurelien Randi
Affiliation:
G2R, Nancy-Université, CNRS, BP 70239, 54506 Vandœuvre-lès-Nancy, France
Michel Cathelineau
Affiliation:
G2R, Nancy-Université, CNRS, BP 70239, 54506 Vandœuvre-lès-Nancy, France
Nicolas Michau
Affiliation:
Agence Nationale pour la Gestion des Déchets Radioactifs (ANDRA), Direction Scientifique/Service Colis et Matériaux, Parc de la Croix Blanche, 1/7 rue Jean Monnet, 92298 Châtenay-Malabry Cedex, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Disposal facilities in deep geological formations are considered to be a possible solution for long-term management of high-level nuclear waste (HLW). The design of the repository generally consists of a multiple-barrier system including Fe-based canisters and a clay backfill material. The Fe-clay system will undergo a thermal gradient in time and space, the heat source being the HLW inside the canisters. In the present paper, the effect of a thermal gradient in space on Fe-smectite interactions was investigated. For this purpose, a tube-in-tube experimental device was developed and an 80–300ºC thermal gradient was applied to a mixture of MX80 bentonite, metallic Fe (powder and plate), magnetite, and fluid over periods of 1 to 10 months. Transformed and newly formed clay minerals were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Mössbauer spectroscopy. The main mineralogical transformations were similar to those described for batch experiments: smectite was destabilized into an Fe-enriched trioctahedral smectite and Fe-serpentine or chlorite as a function of the experimental conditions. Newly formed clay was observed all along the walls of the gold tube. Their crystal chemistry was clearly different from the clays observed in the hot and cold part of the tubes. The thermal diffusion of elements was also observed, especially that of Mg, which migrated toward the hottest parts of the tubes. In the end, the thermal gradient affected the redox equilibria; more reduced conditions were observed in the hotter parts of the tubes.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Baldeyrou, A., Vidal, O. and Fritz, B., 2003 Étude expérimentaledes transformations dephasedans un gradient thermique: application au granite de Soultz-sous-Forêts, France. Experimental study of phase transformations in a thermal gradient: application to the Soultz-sous-Forêts granite(France) Comptes Rendus Geosciences 335 371380 10.1016/S1631-0713(03)00056-7.CrossRefGoogle Scholar
Bildstein, O., Trotignon, L., Perronnet, M. and Jullien, M., 2006 Modelling iron-clay interactions in deep geological disposal conditions Physics and Chemistry of the Earth, Parts A/B/C 31 618625 10.1016/j.pce.2006.04.014.CrossRefGoogle Scholar
Caillère, S., Hénin, S. and Rautureau, M., 1982 Minéralogie des Argiles. Structure et Propriétés Physico-Chimiques Paris Masson.Google Scholar
Carlson, L., Karnland, O., Oversby, V.M., Rance, A.P., Smart, N.R., Snellman, M., Vähänen, M. and Werme, L.O., 2007 Experimental studies of the interactions between anaerobi-cally corroding iron and bentonite Physics and Chemistry of the Earth, Parts A/B/C 32 334345 10.1016/j.pce.2005.12.009.CrossRefGoogle Scholar
Charpentier, D., Devineau, K., Mosser-Ruck, R., Cathelineau, M. and Villiéras, F., 2006 Bentonite-iron interactions under alkaline condition: An experimental approach Applied Clay Science 32 113 10.1016/j.clay.2006.01.006.CrossRefGoogle Scholar
Chipman, J., 1926 The Soret effect Journal of the American Chemical Society 48 25772589 10.1021/ja01421a012.CrossRefGoogle Scholar
de Combarieu, G., Barboux, P. and Minet, Y., 2007 Iron corrosion in Callovo-Oxfordian argilite: From experiments to thermodynamic/kinetic modelling Physics and Chemistry of the Earth 32 346358 10.1016/j.pce.2006.04.019.CrossRefGoogle Scholar
Goffé, B., Murphy, W.M. and Lagache, M., 1987 Experimental transport of Si, Al and Mg in hydrothermal solutions: an application to vein mineralization during high-pressure, low-temperature metamorphism in the French Alps Contributions to Mineralogy and Petrology 97 438450 10.1007/BF00375322.CrossRefGoogle Scholar
Guillaume, D., 2002 Etudeexpérimentale du systèmefer-smectite en présencedesolution a` 80ºC et 300ºC Nancy, France Université Henri Poincaré.Google Scholar
Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F., Baronnet, A. and Michau, N., 2003 Experimental synthesis of chloritefrom smectiteat 300ºC in thepresenceof metallic Fe Clay Minerals 38 281302 10.1180/0009855033830096.CrossRefGoogle Scholar
Guillaume, D., Neaman, A., Cathelineau, M., Mosser-Ruck, R., Peiffert, C., Abdelmoula, M., Dubessy, J., Villiéras, F. and Michau, N., 2004 Experimental study of the transformation of smectite at 80 and 300ºC in the presence of Fe oxides Clay Minerals 39 1734 10.1180/0009855043910117.CrossRefGoogle Scholar
Kostov, I., 1968 Mineralogy Edinburgh and London Oliver and Boyd.Google Scholar
Lantenois, S., Lanson, B., Muller, F., Bauer, A., Jullien, M. and Plançon, A., 2005 Experimental study of smectite interaction with metal Fe at low temperature: 1. Smectite destabilization Clays and Clay Minerals 53 597612 10.1346/CCMN.2005.0530606.CrossRefGoogle Scholar
Madsen, F.T., 1998 Clay mineralogical investigations related to nuclear waste disposal Clay Minerals 33 109129 10.1180/000985598545318.CrossRefGoogle Scholar
Martin, F.A., Bataillon, C. and Schlegel, M.L., 2008 Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment Journal of Nuclear Materials 379 8090 10.1016/j.jnucmat.2008.06.021.CrossRefGoogle Scholar
Martín, M., Cuevas, J. and Leguey, S., 2000 Diffusion of soluble salts under a temperature gradient after the hydration of compacted bentonite Applied Clay Science 17 5570 10.1016/S0169-1317(00)00006-5.CrossRefGoogle Scholar
Neaman, A., Guillaume, D., Pelletier, M. and Villiéras, F., 2003 The evolution of textural properties of Na/Ca-bentonite following hydrothermal treatment at 80 and 300ºC in thepresence of Feand/or Feoxides Clay Minerals 38 213223 10.1180/0009855033820090.CrossRefGoogle Scholar
Paszkuta, M., Rosanne, M. and Adler, P.M., 2006 Transport coefficients of saturated compact clays Comptes Rendus Geosciences 338 908916 10.1016/j.crte.2006.06.008.CrossRefGoogle Scholar
Perronnet, M., Villiéras, F., Jullien, M., Razafitianamaharavo, A., Raynal, J. and Bonnin, D., 2007 Towards a link between the energetic heterogeneities of the edge faces of smectites and their stability in the context of metallic corrosion Geochimica et Cosmochimica Acta 71 14631479 10.1016/j.gca.2006.12.011.CrossRefGoogle Scholar
Perronnet, M., Jullien, M., Villiéras, F., Raynal, J., Bonnin, D. and Bruno, G., 2008 Evidence of a critical content in Fe(0) on FoCa7 bentonite reactivity at 80ºC Applied Clay Science 38 187202 10.1016/j.clay.2007.03.002.CrossRefGoogle Scholar
Poinssot, C., Goffé, B., Magonthier, M.-C. and Toulhoat, P., 1996 Hydrothermal alteration of a simulated nuclear waste glass; effects of a thermal gradient and of a chemical barrier European Journal of Mineralogy 8 533548 10.1127/ejm/8/3/0533.CrossRefGoogle Scholar
Poinssot, C., Jullien, M., and Pozo, C., 1997 Du gradient thermique comme moteur de la migration et des transformations minéralogiques Rapport Scientifique 1997 France CEA, Saclay 196203.Google Scholar
Poinssot, C., Toulhoat, P. and Goffé, B., 1998 Chemical interaction between a simulated nuclear waste glass and different backfill materials under a thermal gradient Applied Geochemistry 13 715734 10.1016/S0883-2927(98)00007-9.CrossRefGoogle Scholar
Robert, C. and Goffé, B., 1993 Zeolitization of basalts in subaqueous freshwater settings: Field observations and experimental study Geochimica et Cosmochimica Acta 57 35973612 10.1016/0016-7037(93)90142-J.CrossRefGoogle Scholar
Rosanne, M., Paszkuta, M., Tevissen, E. and Adler, P.M., 2003 Thermodiffusion in compact clays Journal of Colloid and Interface Science 267 194203 10.1016/S0021-9797(03)00670-2.CrossRefGoogle ScholarPubMed
Rosanne, M., Paszkuta, M. and Adler, P.M., 2006 Thermodiffusional transport of electrolytes in compact clays Journal of Colloid and Interface Science 299 797805 10.1016/j.jcis.2006.03.002.CrossRefGoogle ScholarPubMed
Rousset, D., Guillaume, D., Cathelineau, M., Dubessy, J., Mosser-Ruck, R., Rouiller, A. and Michau, N., 2006 Experimental reactivity of bentonite under linear thermal gradient. Bridging Clay .Google Scholar
Sauzéat, E., Guillaume, D., Villiéras, F., Dubessy, J., François, M., Pfeiffert, C., Pelletier, M., Mosser-Ruck, R., Barrès, O., Yvon, J. and Cathelineau, M., 2001 Caractérisation minéralogique, cristallochimique et texturale de l’argilite MX80 .Google Scholar
Savage, D., Watson, C., Benbow, S. and Wilson, J., 2010 Modelling iron-bentonite interactions Applied Clay Science 47 9198 10.1016/j.clay.2008.03.011.CrossRefGoogle Scholar
Schlegel, M.L., Bataillon, C., Benhamida, K., Blanc, C., Menut, D. and Lacour, J.-L., 2008 Metal corrosion and argillitetransformation at thewater-saturated, high-temperature iron-clay interface: A microscopic-scale study Applied Geochemistry 23 26192633 10.1016/j.apgeochem.2008.05.019.CrossRefGoogle Scholar
Trouiller, A., 2006 Le Callovo-Oxfordien du bassin de Paris: du contexte géologiquea` la modélisation deses propriétés Comptes Rendus Geosciences 338 815823 10.1016/j.crte.2006.09.003.CrossRefGoogle Scholar
Vidal, O., 1997 Experimental study of the thermal stability of pyrophyllite, paragonite, and clays in a thermal gradient European Journal of Mineralogy 9 123140 10.1127/ejm/9/1/0123.CrossRefGoogle Scholar
Vidal, O. and Durin, L., 1999 Aluminium mass transfer and diffusion in water at 400–550ºC, 2 kbar in the K2O–Al2O3-SiO2-H2O system driven by a thermal gradient or by a variation of temperature with time Mineralogical Magazine 63 633647 10.1180/002646199548808.CrossRefGoogle Scholar
Wilson, J., Cressey, G., Cressey, B., Cuadros, J., Ragnarsdottir, K.V., Savage, D. and Shibata, M., 2006 The effect of iron on montmorillonite stability. (II) Experimental investigation Geochimica et Cosmochimica Acta 70 323336 10.1016/j.gca.2005.09.023.CrossRefGoogle Scholar
Wilson, J., Savage, D., Cuadros, J., Shibata, M. and Ragnarsdottir, K.V., 2006 The effect of iron on montmorillonitestability. (I) Background and thermodynamic considerations Geochimica et Cosmochimica Acta 70 306322 10.1016/j.gca.2005.10.003.CrossRefGoogle Scholar