Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:44:22.359Z Has data issue: false hasContentIssue false

Domain Segregation in Ni-Fe-Mg-Smectites

Published online by Cambridge University Press:  02 April 2024

A. Decarreau
Affiliation:
Laboratoire de Géochimie des Roches Sédimentaires, UA-CNRS 723, Université Paris XI, bât. 504, 91405 Orsay Cédex, France Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (LURE), CNRS, 91405 Orsay, France
F. Colin
Affiliation:
Laboratoire de Pétrologie de la Surface, UA-CNRS 721, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cédex, France
A. Herbillon
Affiliation:
Groupe de Physico-Chimie Minérale et de Catalyse, Université Catholique de Louvain, Place Croix du Sud 1, 1348 Louvain la Neuve, Belgique
A. Manceau
Affiliation:
Laboratoire de Minéralogie-Cristallographie, UA-CNRS 9, Universités Paris VI et VII, 4 place Jussieu, 75252 Paris Cédex 05, France Laboratoire pour l'Utilisation du Rayonnement Electromagnétique (LURE), CNRS, 91405 Orsay, France
D. Nahon
Affiliation:
Laboratoire de Pétrologie de la Surface, UA-CNRS 721, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cédex, France
H. Paquet
Affiliation:
Centre de Sédimentologie et Géochimie de la Surface du CNRS, 1 rue Blessig, 67084 Strausbourg Cédex, France
D. Trauth-Badaud
Affiliation:
Laboratoire de Géochimie des Roches Sédimentaires, UA-CNRS 723, Université Paris XI, bât. 504, 91405 Orsay Cédex, France
J. J. Trescases
Affiliation:
Laboratoire de Pétrologie de la Surface, UA-CNRS 721, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first stage of lateritic weathering of pyroxenes in the Niquelandia area, Brazil, leads either to Fe-rich products or to a phyllosilicate clay. In relatively unfractured parent rock the phyllosilicate clay contains Ni-rich smectites, the atomic ratio of Ni: octahedral cations ranging from 0.3 to 0.5. These smectites were studied by polarized light microscopy, X-ray powder diffraction (XRD), transmission electron microscopy, and electron microprobe, and infrared, optical absorption, Mössbauer, and extended X-ray absorption fine-structure (EXAFS) spectroscopy. The chemical composition of the smectite is constant on the optical microscope scale even to the smallest analyzed particles (3000 A in diameter and about 75 Å thick). From XRD data the mineral is principally a swelling, trioctahedral smectite; however, some kerolite-pimelite-like layers are present, and a weak 06,33 reflection indicates the presence of a small amount of a dioctahedral phase. Mössbauer results show that all Fe cations are Fe3+ in octahedral sites. The structural formula of the smectite is: (Ca0.01K0.05)(Al0.17Fe0.5Mg0.48Ni1.47Cr0.02)(Si3.92Al0.08)O10(OH)2

The results obtained from all the above methods suggest that in the smectites Ni, and, perhaps, a small amount of Mg are clustered in pimelite-like domains (or layers), whereas Fe and some Al are clustered in nontronite-like domains (or layers). Most selected-area electron diffraction patterns exhibit continuous or punctuated (hk) rings, indicating that particles contain several stacked layers. The patterns of some thin particles, however, suggest dioctahedral layers having trans-octahedral vacancies, such as in the Garfield, Washington, nontronite. Thus, the Ni-Fe-Mg-smectite, which seemingly is homogeneous, actually consists of mixed trioctahedral and dioctahedral layers or domains.

Type
Research Article
Copyright
Copyright © 1987, The Clay Minerals Society

References

Bart, J. C., Burriesci, N., Cariati, F., Micera, G. and Gessa, C., 1980 Spectroscopic investigation of iron distribution in some bentonites from Sardinia Clays & Clay Minerals 28 233236.CrossRefGoogle Scholar
Berner, R. A. and Schott, J., 1982 Mechanisms of pyroxene and amphibole weathering. II. Observations of soil grains Amer. J. Sci. 282 12141231.CrossRefGoogle Scholar
Besson, G., Bookin, A. S., Dainyak, L. C., Rautureau, M., Tsipursky, S. I., Tchoubar, C. and Drits, U. A., 1983 Use of diffraction and Mössbauer methods for the structural and crystallochemical characterization of nontronite J. Appl. Crystallogr. 16 374383.CrossRefGoogle Scholar
Bonnin, D., Calas, G., Suquet, H. and Pezerat, H., 1985 Intracrystalline distribution of Fe3 in Garfield nontronite: A spectroscopic study Phys. Chem. Minerals 12 5564.CrossRefGoogle Scholar
Bosio, N. J., Hurst, V. J. and Smith, R. L., 1975 Nickeliferous nontronite, a 15 Å garnierite, at Niquelandia, Goias, Brazil Clay Miner. 23 400403.CrossRefGoogle Scholar
Brindley, G. W., Bish, D. L. and Wan, H. M., 1979 Compositions, structure and properties of nickel-containing minerals in the kerolite-pimelite series Amer. Mineral. 64 615625.Google Scholar
Calas, G., Basset, W. A., Petiau, J., Steinberg, M., Tchoubar, D. and Zarka, A., 1984 Mineralogical applications of synchrotron radiation Phys. Chem. Minerals 11 1736.CrossRefGoogle Scholar
Coey, J. M. D., 1980 Clay minerals and their transformations studied with nuclear techniques: The contribution of Mössbauer spectroscopy Atomic Energy Review 18 73124.Google Scholar
Coey, J. M. D. Chukhrov, F. V. and Zvyagin, B. B., 1984 Cation distribution, Mössbauer spectra and magnetic properties of ferri-pyrophyllite Clays & Clay Minerals 32 198204.CrossRefGoogle Scholar
Colin, F., 1984 Etude petrologique des altérations de pyroxŋite du gisement nickellifère de Niquelândia (Brésil) Thèse 3è cycle, Univ. Paris VII.Google Scholar
Colin, F., Noack, Y., Trescases, J. J. and Nahon, D., 1985 L’altération latéritique débutante des pyroxénites de Jacuba, Niquelândia, Brésil Clay Miner. 20 93113.CrossRefGoogle Scholar
Decarreau, A., 1981 Cristallogenèse à basse température de smectites trioctaédriques par vieillissement de coprécipités silicométalliques C.R. Acad. Sci. Paris D 292 6164.Google Scholar
Decarreau, A., 1983 Etude expérimental de la cristallogenèse des smectites. Mesures des coefficients de partage smectite trioctaédrique-solution aqueuse pour les métaux M2+ de la première série de transition Sci. Géol. Mém. 74 1185.Google Scholar
Eggleton, R. A. and Bolland, J. W., 1982 Weathering of enstatite to talc through a sequence of transitional phases Clays & Clay Minerals 30 1120.CrossRefGoogle Scholar
Gerard, P. and Herbillon, A. J., 1983 Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series Clays & Clay Minerals 31 143151.CrossRefGoogle Scholar
Goodman, B. A., 1978 The Mössbauer spectra of nontronites: Consideration of an alternative assignment Clays & Clay Minerals 26 176177.CrossRefGoogle Scholar
Goodman, B. A., Russell, J. D., Fraser, A. R. and Woodhams, F. W. D., 1976 A Mössbauer and IR spectroscopic study of the structure of nontronite Clays & Clay Minerals 24 5359.CrossRefGoogle Scholar
Heller, L., Farmer, V. C., Mackenzie, R. C., Mitchel, B. D. and Taylor, H. F. W., 1962 The dehydroxylation and rehydroxylation of trimorphic dioctahedral clay minerals Clay Miner. Bull. 5 5672.CrossRefGoogle Scholar
Heller-Kallai, L. and Rosenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Phys. Chem. Minerals 7 223238.CrossRefGoogle Scholar
Manceau, A. and Calas, G., 1986 Nickel-bearing clay minerals. 2. X-ray absorption study of Ni-Mg distribution Clay Miner. 21 341360.CrossRefGoogle Scholar
Manceau, A., Calas, G. and Decarreau, A., 1985 Nickel-bearing clay minerals. I. Optical study of nickel crystal chemistry Clay Miner. 20 367387.CrossRefGoogle Scholar
Nahon, D. and Colin, F., 1982 Chemical weathering of orthopyroxenes under lateritic conditions Amer. J. Sci. 282 12321243.CrossRefGoogle Scholar
Paquet, H., Duplay, J., Nahon, D., van Olphen, H. and Veniale, F., 1982 Variations in the composition of phyllosilicate monoparticles in a weathering profile of ultrabasic rocks Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elsevier 595603.Google Scholar
Proust, D., 1983 Mécanisme de l’altération supergène des roches basiques. Etudes des arènes d’orthoamphibolites du Limousin et de glaucophanite de l’île de Groix, Morbihan These Sci., Univ. Poitiers .Google Scholar
Raoux, D., Petiau, J., Bonnot, P., Calas, G., Fontaine, A., Lagarde, P., Levitz, P., Loupias, G. and Sadoc, A., 1980 L’EXAFS appliqué aux déterminations structurales de milieux désordonnés Rev. Phys. Appl. 15 10791094.CrossRefGoogle Scholar
Rozenson, I. and Heller-Kallai, L., 1977 Mössbauer spectra of dioctahedral smectites Clays & Clay Minerals 25 94101.CrossRefGoogle Scholar
Russell, J. D., Farmer, V. C. and Velde, B., 1970 Replacement of OH by OD in layer silicates and identification of the vibrations of these groups in infrared spectra Mineral. Mag. 37 870879.CrossRefGoogle Scholar
Serratosa, J. M., 1960 Dehydratation studies by IR spectroscopy Amer. Mineral. 45 11011104.Google Scholar
Teo, B. K. and Lee, P. A., 1980 Ab initio calculation of amplitude and phase function for extended X-ray absorption fine structure (EXAFS) spectroscopy J. Amer. Chem. Soc. 101 28152830.CrossRefGoogle Scholar
Weaver, C. E. and Pollard, L. D., 1973 1973 Amsterdam Elsevier.Google Scholar
Wiewiora, A., Dubinska, E., Iwasinska, I., van Olphen, H. and Veniale, F., 1982 Mixedlayering in Ni-containing talc-like minerals from Szklary, Lower Silesia, Poland Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elsevier 111126.Google Scholar
Wilkins, R. W. T. and Ito, J., 1967 Infrared spectra of some synthetic talcs Amer. Mineral. 52 16491661.Google Scholar