Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T01:31:23.859Z Has data issue: false hasContentIssue false

Dithionite as a Dissolving Reagent for Goethite in the Presence of Edta and Citrate. Application to Soil Analysis

Published online by Cambridge University Press:  28 February 2024

Elsa H. Rueda
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Avenida Alem 1253, (8000) Bahía Blanca, Argentina
María C. Ballesteros
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Avenida Alem 1253, (8000) Bahía Blanca, Argentina
Reynaldo L. Grassi
Affiliation:
Departamento de Química e Ingeniería Química, Universidad Nacional del Sur, Avenida Alem 1253, (8000) Bahía Blanca, Argentina
Miguel A. Blesa
Affiliation:
Departamento Química de Reactores, Comisión Nacional de Energía Atómica, Avenida del Libertador 8250, (1429), Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A synergistic effect of reductant and complexant is observed in the dissolution of goethite by dithionite and citrate or EDTA. The rate data are interpreted using the surface complexation approach to describe the interface of the reacting oxide. Adsorption of both S2O42− (D) and complexant (L) generates three surface complexes that define the dissolution behavior: ≡ Fe-D, ≡ Fe-L, and dimeric surface complexes. The initial rate increases at lower pH values because of increased surface complexation conditional formation constants. At pH values below 4, however, the fast decomposition of S2O42− gives rise to a rapid depletion of reductant, and total dissolution is not observed. It is shown that for best analytical results in soil analysis, EDTA is a better complexant than citrate; the iron extracted in one dithionite-EDTA treatment at pH 5–6, under N2 at 315 K is not increased by increasing the number of extractions, and is equivalent to the total extractable iron found by previous procedures.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Aguilera, N. H. and Jackson, K. L., 1953 Iron oxide removal from soils and clays Soil Sci. Soc. Amer. Proc. 17 359364 10.2136/sssaj1953.03615995001700040015x.CrossRefGoogle Scholar
Ardizzone, S. and Formaro, L., 1983 Temperature induced phase transformation of metastable Fe(OH)3 in the presence of ferrous ions Materials Chem. Phys. 8 125 10.1016/0254-0584(83)90046-9.CrossRefGoogle Scholar
Atkinson, R. J., Posner, A. M. and Quirk, J. P., 1968 Crystal nucleation in Fe(III) solutions and hydroxide gels J. Inorg. Nucl. Chem. 30 23712381 10.1016/0022-1902(68)80247-7.CrossRefGoogle Scholar
Balahura, R. J. and Johnson, M. D., 1987 Outer-sphere dithionite reductions of metal complexes Inorg. Chem. 26 3860 10.1021/ic00270a010.CrossRefGoogle Scholar
Baumgartner, E., Blesa, M. A., Marinovich, H. A. and Maroto, A. J. G., 1983 Heterogeneous electron transfer as a pathway in the dissolution of magnetite in oxalic acid solutions Inorg. Chem. 22 2224 10.1021/ic00158a002.CrossRefGoogle Scholar
Blesa, M. A. and Maroto, A. J. G., 1986 Dissolution of metal oxides J. Chim. Phys. 83 757764 10.1051/jcp/1986830757.CrossRefGoogle Scholar
Blesa, M. A., Regazzoni, A. E. and Maroto, A. J. G., 1988 Reactions of metal oxides with aqueous solutions Mater. Sci. Forum 29 3198 10.4028/www.scientific.net/MSF.29.31.CrossRefGoogle Scholar
Blesa, M. A., Regazzoni, A. E. and Morando, P. J., 1992 Chemical Dissolution of Metal Oxides .Google Scholar
Blesa, M. A., Regazzoni, A. E. and Stumm, W., 1992 Surface Complexes as Reactive Species in Metal Oxide Dissolution .Google Scholar
Blesa, M. A., Borghi, E. B., Maroto, A J G and Regazzoni, A. E., 1984 Adsorption of EDTA and iron-EDTA complexes on magnetite and the mechanism of dissolution of magnetite by EDTA J. Colloid Interface Sci. 98 295305.Google Scholar
Blesa, M. A., Marinovich, H. A., Baumgartner, E. C. and Maroto, A. J. G., 1987 Mechanism of dissolution of magnetite by oxalic acid-ferrous ion solutions Inorg. Chem. 26 37133717 10.1021/ic00269a019.CrossRefGoogle Scholar
Borggaard, O. K., 1991 Effects of phosphate on iron oxide dissolution in EDTA and oxalate Clays & Clay Minerals 39 324327 10.1346/CCMN.1991.0390313.CrossRefGoogle Scholar
Borghi, E. B., Morando, P. J. and Blesa, M. A., 1991 The dissolution of magnetite by mercaptocarboxylic acids Langmuirl 16521659.CrossRefGoogle Scholar
Borghi, E. B., Regazzoni, A. E., Maroto, A. J. G., and Blesa, M. A., (1989) Reductive dissolution of magnetite by solutions containing EDTA and Fe(II): J. Colloid Interface Sci. 130, 299310.CrossRefGoogle Scholar
Bowden, J. W., Nagarajah, N. J., Barrow, N. J., Posner, A. M. and Quirk, J. P., 1980 Describing the adsorption of phosphate, citrate, and selenite on a variable-charge mineral surface Aust. J. Soil Res. 18 4960 10.1071/SR9800049.CrossRefGoogle Scholar
Brown, W. E., Dollimore, D., and Galwey, A. K., (1980) Reactions in the Solid State. Comprehensive Chemical Kinetics, Vol. 22, Bamford, C. H., and Tipper, C. F. H., eds., Elsevier, Amsterdam.Google Scholar
Bruyère, V I E and Blesa, M. A., 1985 Acidic and reductive dissolution of magnetite in aqueous sulfuric acid J. Electroanal. Chem. 182 141156 10.1016/0368-1874(85)85447-2.CrossRefGoogle Scholar
Cornell, R. M., Posner, A. M., and Quirk, J. P., (1974) Crystal morphology and the dissolution geothite: J. Inorg. Nucl. Chem. 36, 1937.CrossRefGoogle Scholar
Cornell, R. M., Posner, A. M. and Quirk, J. P., 1976 Kinetics and mechanism of the acid dissolution of goethite (α-FeOOH) J. Inorg. Nucl. Chem. 38 563567 10.1016/0022-1902(76)80305-3.CrossRefGoogle Scholar
Davis, A. D., James, R. O. and Leckie, J. O., 1978 Surface ionization and complexation at the oxide/water interface. I. Computation of electrical double layer properties in simple electrolytes J. Colloid Interface Sci. 63 480 10.1016/S0021-9797(78)80009-5.CrossRefGoogle Scholar
Deb, V. C., 1950 The estimations of free iron oxide in soils and clays and their removal J. Soil Sci. 1 212220 10.1111/j.1365-2389.1950.tb00733.x.CrossRefGoogle Scholar
De Poy, P. E. and Mason, D. M., 1975 Periodicity in chemically reacting systems: Model of the kinetic of the decomposition of sodium dithionite Faraday Symp. Chem. Soc. 9 4754.CrossRefGoogle Scholar
dos Santos Afonso, M. and Stumm, W., 1992 The Reductive Dissolution of Iron (III)(Hydr)oxides by Hydrogen Sulfide: to be published 10.1021/la00042a030.CrossRefGoogle Scholar
dos Santos Afonso, M., Morando, P. J., Blesa, M. A., Banwart, S. and Stumm, W., 1990 The reductive dissolution of iron oxides by ascorbate J. Colloid Interface Sci. 138 7482 10.1016/0021-9797(90)90181-M.CrossRefGoogle Scholar
Dzombak, D. A. and Morel, F. M. M., 1990 Surface Complexation Modelling. Hydrous Ferric Oxide .Google Scholar
Gorichev, I. G. and Kipriyanov, N. A., 1981 Kinetics of the dissolution of oxide phases in acids Russian J. Phys. Chem. 55 15581568.Google Scholar
Hidalgo, M d V Katz, N. E., Maroto, A J G and Blesa, M. A., 1988 The dissolution of magnetite by nitrilotriacetatoferrate(II) J. Chem. Soc. Faraday Trans. I 84 918 10.1039/f19888400009.CrossRefGoogle Scholar
Hiemstra, T., de Wit, J C M and van Riemsdijk, W. H., 1989 Multisite proton adsorption modelling at the solid/solution interface of (hydr)oxides: A new approach. II. Application to various important (hydr)oxides J. Colloid Interface Sci. 133 105117 10.1016/0021-9797(89)90285-3.CrossRefGoogle Scholar
Hingston, F. J., Posner, A. M., and Quirk, J. P., (1972) Anion adsorption by goethite and gibbsite. I. The role of the proton in determining adsorption envelopes: J. Soil Sci. 23, 177.CrossRefGoogle Scholar
Hsu, P. H., 1967 Determination of iron with thiocyanate Soil Sci. Soc. Am. Proc. 31 353355 10.2136/sssaj1967.03615995003100030020x.CrossRefGoogle Scholar
James, R. O., Stiglich, P. J., and Healy, T. W., (1975) Analysis of models of adsorption of metal ions at oxide water interface: Disc. Faraday Soc. 59, 142.CrossRefGoogle Scholar
Lambeth, D. O., and Palmer, G., (1973) The kinetics and mechanism of reduction of electron transfer proteins and other compounds of biological interest by dithionite: J. Biol. Chem. 248, 6095.CrossRefGoogle ScholarPubMed
Litter, M. I., Baumgartner, E. C., Urrutia, G. A. and Blesa, M. A., 1991 Photodissolution of iron oxides III: The interplay of photochemical and thermal processes in mag-hemite/carboxylic acid systems Environmental Sci. Techn. 25 19071913 10.1021/es00023a011.CrossRefGoogle Scholar
Mc Keague, J. A. and Day, J. H., 1966 Dithionite and oxalate-extractable Fe and Al as acids in differentiating various classes of soils Can. J. Soil Sci. 46 1322 10.4141/cjss66-003.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays and Clay Minerals New York Pergamon Press 317327.Google Scholar
Regazzoni, A. E., Urrutia, G. A., Blesa, M. A. and Maroto, A. J. G., 1981 Some observations on the composition and morphology of synthetic magnetites obtained by different routes J. Inorg. Nuc. Chem. 43 14891493 10.1016/0022-1902(81)80322-3.CrossRefGoogle Scholar
Rinker, R. G., Lynn, S., Mason, D. M. and Corcoran, W. H., 1965 Kinetics and mechanism of the thermal decomposition of sodium dithionite in aqueous solution Ind. Eng. Chem. Fund. 4 282288 10.1021/i160015a008.CrossRefGoogle Scholar
Rochester, C. H. and Topham, S. A., 1979 Infrared study of surface hydroxyl groups on goethite J. C. S. Faraday I 75 591602 10.1039/f19797500591.CrossRefGoogle Scholar
Rueda, E. H., 1988 Procesos de adsorción y disolución en la interfaz goetita/solución acuosa (Bahía Bianca) Universidad Nacional del Sur.Google Scholar
Rueda, E. H., Grassi, R. L. and Blesa, M. A., 1985 Adsorption and dissolution in the system goethite/aqueous EDTA J. Colloid Interface Sci. 106 243246 10.1016/0021-9797(85)90401-1.CrossRefGoogle Scholar
Russell, J. D., Parfitt, R. L., Fraser, A. R. and Farmer, V. C., 1974 Surface structures of gibbsite, goethite, and phos-phated goethite Nature 248 220221 10.1038/248220a0.CrossRefGoogle Scholar
Ryan, J. N. and Gschwend, P. M., 1991 Extraction of iron oxides from sediments using reductive dissolution by ti-tanium(III) Clays and Clay Minerals 39 509518 10.1346/CCMN.1991.0390506.CrossRefGoogle Scholar
Segal, M. G. and Williams, W. J., 1986 Kinetics of metal oxide dissolution J. Chem. Soc. Faraday Trans. I 82 3245 10.1039/f19868203245.CrossRefGoogle Scholar
Tamaura, Y., Ito, K. and Katsura, T., 1983 Transformation of γ-FeO(OH) to Fe3O4 by adsorption of iron(II) iron on γ-FeO(OH) J. Chem. Soc. Dalton Trans. 189194.CrossRefGoogle Scholar
Torrent, J., Schwertmann, U. and Barron, V., 1987 The reductive dissolution of synthetic goethite and hematite in dithionite Clay Miner. 22 329337 10.1180/claymin.1987.022.3.07.CrossRefGoogle Scholar
Torres, R., Blesa, M. A. and Matijevic, E., 1990 Interactions of metal hydrous oxides with chelating agents. IX. Reductive dissolution of hematite and magnetite by ami-nocarboxylic acids J. Colloid Interface Sci. 134 475485 10.1016/0021-9797(90)90157-J.CrossRefGoogle Scholar
Tronc, E., Jolivet, J. P. and Massart, R., 1982 Defect spinel structure in iron oxide colloids Mat. Res. Bull. 17 13651369 10.1016/0025-5408(82)90220-3.CrossRefGoogle Scholar
Valverde, N., 1976 Investigations on the rate of dissolution of metal oxides in acidic solutions with additions of redox couples and complexing agents Ber. Bunsenges Physik. Chem. 80 333340 10.1002/bbpc.19760800414.CrossRefGoogle Scholar
Wayman, M. and Lern, W. J., 1970 Decomposition of aqueous dithionite. II. Reaction mechanism for the decomposition of aqueous sodium dithionite Can. J. Chem. 48 782787 10.1139/v70-127.CrossRefGoogle Scholar
Wieland, E., Wehrli, B. and Stumm, W., 1988 The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals Geochim. Cosmochim. Acta 52 19691981 10.1016/0016-7037(88)90178-0.CrossRefGoogle Scholar