Hostname: page-component-5f745c7db-8qdnt Total loading time: 0 Render date: 2025-01-06T13:58:52.475Z Has data issue: true hasContentIssue false

Development of Ammonium-Saponites from Gels with Variable Ammonium Concentration and Water Content at Low Temperatures

Published online by Cambridge University Press:  28 February 2024

J. Theo Kloprogge*
Affiliation:
Department of Geochemistry, Institute of Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
Johan Breukelaar
Affiliation:
Koninklijke/Shell-Laboratorium Amsterdam (Shell Research B.V.), P.O. Box 3003, 1003 AA, Amsterdam, The Netherlands
J. Ben H. Jansen*
Affiliation:
Department of Geochemistry, Institute of Earth Sciences, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
John W. Geus
Affiliation:
Department of Inorganic Chemistry, University of Utrecht, P.O. Box 80.083, 3508 TB Utrecht, The Netherlands
*
**Present address: Plastics and Rubber Institute TNO, P.O. Box 108, 3700 AC, Zeist, The Netherlands.
***Present address: Bowagemi, Prinses Beatrixlaan 20, 3972 AN Driebergen, The Netherlands.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ammonium-saponite is hydrothermally grown at temperatures below 300°C from a gel with an overall composition corresponding to (NH4)0.6Mg3Si3.4Al0.6O10(OH)2. The synthetic saponite and coexisting fluid have been characterized by means of X-ray powder diffraction, X-ray fluorescence, Induced Coupled Plasma-Atomic Emission Spectroscopy, thermogravimetric analysis, transmission electron microscopy, CEC determination using an ammonia selective electrode, and pH measurement. In the crystallization model developed, crystallization started with the growth of individual tetrahedral layers with an aluminum substitution not controlled by the A1IV/A1VI ratio in the gel and hydrothermal fluid, on which the octahedral Mg layers can grow. During the synthesis, individual sheets stacked to form thicker flakes while lateral growth also took place. The remaining A1VI partly replaced ammonium as the interlayer cation.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Footnotes

*

This paper is a joint contribution from the Debye Institute, University of Utrecht, The Netherlands, and Shell Research B.V., Amsterdam.

References

Decarreau, A., 1980 Cristallogène expérimentale des smectites magnésiennes: Hectorite, stevensite Bull. Mineral 103 579590.Google Scholar
Decarreau, A., 1985 Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water Geochim. Cosmochim. Acta 49 15371544 10.1016/0016-7037(85)90258-3.CrossRefGoogle Scholar
Hamilton, D. L. and Henderson, C. M. B., 1968 The preparation of silicate compositions by a gelling method Mineral. Mag 36 832838.Google Scholar
Hickson, D. A., (1974) Layered clay minerals, catalysts, and processes for using: U.S. Patent 3,844,979, Oct. 29, 1974, 7 pp.Google Scholar
Hickson, D. A., (1975a) Layered clay minerals, catalysts, and processes for using: U.S. Patent 3,887,454, June 3, 1975,9 pp.Google Scholar
Hickson, D. A., (1975b) Layered clay minerals, catalysts, and processes for using: U.S. Patent 3,892,655, July 1, 1975, 7 pp.Google Scholar
Iiyama, J. T. and Roy, R., 1963 Controlled synthesis of heteropolytypic (mixed layer) clay minerals Clays & Clay Minerals 10 422 10.1346/CCMN.1961.0100103.CrossRefGoogle Scholar
Iwasaki, T., Onodera, Y. and Torii, K., 1989 Rheological properties of organophyllic synthetic hectorites and saponites Clays & Clay Minerals 37 248257 10.1346/CCMN.1989.0370308.CrossRefGoogle Scholar
KJoprogge, J. T., (1992) Pillared clays: preparation and characterization of clay minerals and aluminum-based pillaring agents: Ph.D. thesis, University of Utrecht, The Netherlands, Geologica Ultraiectina 91, pp #s.Google Scholar
Kloprogge, J. T., van der Eerden, A M J Jansen, J B H and Geus, J. W., 1990 Hydrothermal synthesis of Na-beidellite Geologie en Mijnbouw 69 351357.Google Scholar
Kloprogge, J. T., Jansen, J B H and Geus, J. W., 1990 Characterization of synthetic Na-beidellite Clays & Clay Minerals 38 409414 10.1346/CCMN.1990.0380410.CrossRefGoogle Scholar
Kloprogge, J. T., Breukelaar, J., Geus, J. W. and Jansen, J. B. H., 1993 Properties of synthetic saponites in relation to different interlayer cations: Na+, K+, Rb+, Ca2+, Ba2+, Ce4+ Clays & Clay Minerals .Google Scholar
Kloprogge, J. T., Breukelaar, J., Wilson, A. E., Geus, J. W. and Jansen, J. B. H., 1993 Solid-state nuclear magnetic resonance spectroscopy on synthetic saponites: aluminum on the interlayer site Clays & Clay Minerals .CrossRefGoogle Scholar
Koizumi, M. and Roy, R., 1959 Synthetic montmorillon-oids with variable exchange capacity Amer. Mineral 44 788805.Google Scholar
Lipsicas, M., Raythatha, R. H., Pinnavaia, T. J., Johnson, I. D., Giese, R. F. Jr. Costanzo, P. M. and Roberts, J.-L., 1984 Silicon and aluminium site distributions in 2:1 layered silicate clays Nature 309 604607 10.1038/309604a0.CrossRefGoogle Scholar
Plee, D., Gatineau, L. and Fripiat, J. J., 1987 Pillaring processes of smectites with and without tetrahedral substitution Clays & Clay Minerals 35 8188 10.1346/CCMN.1987.0350201.CrossRefGoogle Scholar
Schutz, A., Stone, W E E Poncelet, G. and Fripiat, J. J., 1987 Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions Clays & Clay Minerals 35 251261 10.1346/CCMN.1987.0350402.CrossRefGoogle Scholar
Shabtai, J., Rosell, M. and Tokarz, M., 1984 Cross-linked smectites. III. Synthesis and properties of hydroxy-aluminum hectorites and fluorhectorites Clays & Clay Minerals 32 99107 10.1346/CCMN.1984.0320203.CrossRefGoogle Scholar
Sterte, J. and Shabtai, J., 1987 Cross-linked smectites. V. Synthesis and properties of hydroxy-silicoaluminum mont-morillonites and fluorhectorites Clays & Clay Minerals 35 429439 10.1346/CCMN.1987.0350603.CrossRefGoogle Scholar
Suquet, H., Iiyama, J. T., Kodama, H. and Pezerat, H., 1977 Synthesis and swelling properties of saponites with increasing layer charge Clays & Clay Minerals 25 231242 10.1346/CCMN.1977.0250310.CrossRefGoogle Scholar
Suquet, H., de la Calle, and Pezerat, H., 1975 Swelling and structural organization of saponite Clays & Clay Minerals 23 19 10.1346/CCMN.1975.0230101.CrossRefGoogle Scholar
Torii, K. and Iwasaki, T., 1987 Synthesis of hectorite Clay Science 7 116.Google Scholar
Van der Marel, H. W. and Beutelspacher, H., 1976 Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures Amsterdam Elsevier.Google Scholar
Voncken, J H L Wevers, J M A R van der Eerden, A M J Bos, A. and Jansen, J. B. H., 1987 Hydrothermal synthesis of tobelite, NH4Al2Si3O10(OH)2, from various starting materials and implications for its occurrence in nature Geologie en Mijnbouw 66 259269.Google Scholar
Woessner, D. E., 1989 Characterization of clay minerals by 27Al nuclear magnetic resonance spectroscopy Amer. Mineral 74 203215.Google Scholar