Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T16:20:15.390Z Has data issue: false hasContentIssue false

Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit, Senegal

Published online by Cambridge University Press:  01 January 2024

E. García-Romero*
Affiliation:
Departamento de Cristalografía y Mineralogía, Universidad Complutense de Madrid, E-28040 Madrid, Spain
M. Suárez
Affiliation:
Departamento de Geología, Universidad de Salamanca, E-37008 Salamanca, Spain
J. Santarén
Affiliation:
TOLSA Ctra Vallecas-Mejorada del Campo, km 1600, 28031 Madrid, Spain
A. Alvarez
Affiliation:
TOLSA Ctra Vallecas-Mejorada del Campo, km 1600, 28031 Madrid, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Allou Kagne (Senegal) deposit consists of different proportions of palygorskite and sepiolite, and these are associated with small quantities of quartz and X-ray amorphous silica as impurities. No pure palygorskite or sepiolite has been recognized by X-ray diffraction. Textural and microtextural features indicate that fibrous clay minerals of the Allou Kagne deposit were formed by direct precipitation from solution. Crystal-chemistry data obtained by analytical/transmission electron microscopy (AEM/TEM) analyses of isolated fibers show that the chemical composition of the particles varies over a wide range, from a composition corresponding to palygorskite to a composition intermediate between that of sepiolite and palygorskite, but particles with a composition corresponding to sepiolite have not been found. Taking into account the results from selected area electron diffraction and AEM-TEM, fibers of pure palygorskite and sepiolite have been found but it cannot be confirmed that all of the particles analyzed correspond to pure palygorskite or pure sepiolite because both minerals can occur together at the crystallite scale. In addition, the presence of Mg-rich palygorskite and very Al-rich sepiolite can be deduced.

It is infrequent in nature that palygorskite and sepiolite appear together because the conditions for simultaneous formation of the two minerals are very restricted. The chemical composition of the solution controls the formation of the Allou Kagne sepiolite and palygorskite. The wide compositional variation appears as a consequence of temporary variations of the chemical composition of the solution.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Akbulut, A. and Kadir, S., (2003) The geology and origin of sepiolite, palygorskite and saponite in Neogene lacustrine sediments of the Serinhisar-Acipayam Basin, Denizly, SW Turkey Clays and Clay Minerals 51 279292 10.1346/CCMN.2003.0510304.CrossRefGoogle Scholar
Alvarez, A., Singer, A. and Galán, E., (1984) Sepiolite properties and uses Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elsevier 253287.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structure of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1123.Google Scholar
Birsoy, R., (2002) Formation of sepiolite-palygorskite and related minerals from solution Clays and Clay Minerals 50 736745 10.1346/000986002762090263.CrossRefGoogle Scholar
Bowles, A. Angino, E.A. Hosterman, J.W. and Galle, O.K., (1971) Precipitation of deep-sea palygorskite and sepiolite Earth and Planetary Science Letters 11 324332 10.1016/0012-821X(71)90187-7.CrossRefGoogle Scholar
Bradley, W.F., (1940) The structural scheme of attapulgite American Mineralogist 25 405411.Google Scholar
Brauner, K. and Preisinger, A., (1956) Estruktur und Enstehung des sepiolits Tschermaks Mineralogische und Petrographisches Mitteilungen 6 120140 10.1007/BF01128033.CrossRefGoogle Scholar
Castillo, A., Lunar, R. and Oyarzun, R., (1991) Geología de los yacimientos de minerales del grupo paligorskita-sepiolita Yacimientos minerales, Técnicas de estudio, Tipos, Evoloción metalognética, Exploración S.A., Spain Editorial Centro de Estudios ramón Areces 609636.Google Scholar
Chahi, A. Fritz, B. Duplay, J. Weber, F. and Lucas, J., (1997) Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco) Clays and Clay Minerals 45 378389 10.1346/CCMN.1997.0450308.CrossRefGoogle Scholar
Chahi, A. Petit, S. and Decarreau, A., (2002) Infrared evidence of dioctahedral-trioctahedral site occupancy in palygorskite Clays and Clay Minerals 50 306313 10.1346/00098600260358067.CrossRefGoogle Scholar
Estéoule-Choux, J., (1984) Palygorskite in the Tertiary deposits of the Armorican Massif Palygrorskite-Sepiolite. Occurrences, Genesis and Uses 37 7585.Google Scholar
Galán, E. and Carretero, I., (1999) A new approach to compositional limits for sepiolite and palygorskite Clays and Clay Minerals 47 399409 10.1346/CCMN.1999.0470402.CrossRefGoogle Scholar
Galán, E. Castillo, A., Singer, A. and Galán, E., (1984) Sepiolite-palygorskite in Spanish Tertiary basins: Genetical patterns in continental environments Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elsevier 87124.Google Scholar
Galán, E. and Ferrero, A., (1982) Palygorskite-sepiolite clays of Lebrija, Southern Spain Clays and Clay Minerals 30 191199 10.1346/CCMN.1982.0300305.CrossRefGoogle Scholar
Garcia-Romero, E. Suárez Barrios, M. and Bustillo Revuelta, M.A., (2004) Characteristics of a Mg-palygorskite in Miocene rocks (Madrid Basin, Spain) Clays and Clay Minerals 52 486494.Google Scholar
Garcia-Romero, E. Suárez, M. Oyarzun, R. López-García, J.A. and Regueiro, M., (2006) Fault-hosted palygorskite from the Serrata de Níjar deformation zone (SE Spain) Clays and Clay Minerals 54 324332 10.1346/CCMN.2006.0540304.CrossRefGoogle Scholar
Haji-Vassilou, A. and Puffer, J.H., (1975) A macrocrystalline attapulgite-palygorskite ocurrence in calcite veins American Mineralogist 60 328330.Google Scholar
Hay, R.L. and Wiggins, B., (1980) Pellets, ooids, sepiolite and silica in three calcretes of the southwestern United States Sedimentology 27 559576 10.1111/j.1365-3091.1980.tb01647.x.CrossRefGoogle Scholar
Jones, B.F. Galán, E. and Bailey, S.W., (1988) Sepiolite and palygorskite Hydrous Phyllosilicates (exclusive of micas) Washington, D.C. Mineralogical Society of America 631674 10.1515/9781501508998-021.CrossRefGoogle Scholar
Kamineni, D.C. Griffault, L.Y. and Kerrich, R., (1993) Palygorskite from fracture zones in the Eye—Dashwa Lakes granitic pluton, Atikokan, Ontario The Canadian Mineralogist 31 173183.Google Scholar
Khoury, J.N. Eberl, D.D. and Jones, B.F., (1982) Origin of magnesium clays from the Amargosa Desert, Nevada Clays and Clay Minerals 30 327336 10.1346/CCMN.1982.0300502.CrossRefGoogle Scholar
La Iglesia, A., (1977) Precipitación por disolución homogénea de silicatos de aluminio y magnesio a temperatura ambiente. Síntesis de la paligorskita Estudios Geológicos 33 535544.Google Scholar
Leguey, S., Martín Rubí, J.A., Casas, J., Marta, J., Cuevas, J., Alvarez, J. and Medina, J.A. (1995) Diagenetic evolution and mineral fabric in sepiolitic materials from the Vicalvaro Deposit (Madrid Basin). Pp. 383392 in: Proceedings of the 10th International Clay Conference, Adelaide.Google Scholar
Lopez-Galindo, A. Ben Aboud, A. Fenoll Hach-Ali, P. and Casas Ruiz, J., (1996) Mineralogical and geochemical characterization of palygorskite from Gabasa (NE Spain). Evidence of a detrital precursor Clay Minerals 31 3344 10.1180/claymin.1996.031.1.03.CrossRefGoogle Scholar
Marín Pozas, J.M. Sánchez Camazano, M. and Martín Vivaldi Martínez, J.L., (1981) La Paligorskita de Tabladillo (Guadalajara) Boletín Geológico y Minero XCII-V 395402.Google Scholar
Martín Vivaldi, J.L. and Cano, J., (1956) Contribution to the study of sepiolite: II Some considerations regarding the mineralogical formula Proceedings of the fourth National Conference on Clays and Clay Minerals USA National Academy of Sciences — National Research Council Publication 456, 1956 173176.Google Scholar
Millot, G., (1970) Geology of Clays: Weathering, Sedimentology, Geochemisty New York Springer Verlag 10.1007/978-3-662-41609-9 430 pp.CrossRefGoogle Scholar
Newman, A.C.D. Brown, G. and Newman, A.C.D., (1987) The chemical constitution of clays Chemistry of Clays and Clay Minerals Harlow, Essex, UK The Mineralogical Society, Longman Scientific and Technical 1128.Google Scholar
Paquet, H. Duplay, J. Vallerçon-Blanc, M.M. Millot, G., Schultz, L.G. Van Olphen, H. and Mumpton, F.A., (1987) Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages Proceedings of the International Clay Conference, Denver, 1985 Bloomington, Indiana The Clay Minerals Society 7377.Google Scholar
Serna, C. Van Scoyoc, G.E. and Ahlrichs, J.L., (1977) Hydroxyl groups and water in palygorskite American Mineralogist 62 784792.Google Scholar
Siffert, B. and Wey, R., (1962) Synthèse d’une sépiolite à température ordinaire Comptes rendus de l’Academie des sciences, Paris 245 14601463.Google Scholar
Singer, A., Singer, A. and Galán, E., (1984) Pedogenic palygorskite in the arid environment Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elsevier 169175.Google Scholar
Singer, A. and Norrish, K., (1974) Pedogenetic palygorskite. Occurrences in Australia American Mineralogist 59 508517.Google Scholar
Suárez, M. Robert, M. Elsass, F. and Martín Pozas, J.M., (1994) Evidence of a precursor in the neoformation of palygorskite — New data by analytical electron microscopy Clay Minerals 29 255264 10.1180/claymin.1994.029.2.11.CrossRefGoogle Scholar
Tien, P.L., (1973) Palygorskite from Warren Quarry, Enderby, Leicestershire, England Clay Minerals 10 2734 10.1180/claymin.1973.010.1.03.CrossRefGoogle Scholar
Torres-Ruiz, J. López-Galindo, A. González-López, J.M. and Delgado, A., (1994) Geochemistry of Spanish sepiolitepalygorskite deposits: Genetic considerations based on trace elements and isotopes Geochemical Geology 112 221245 10.1016/0009-2541(94)90026-4.CrossRefGoogle Scholar
Verrecchia, E.P. and Le Coustumer, M.N., (1996) Occurrence and genesis of palygorskite and associated clay minerals i Pleistocene calcrete complex, Sde Boqer, Negev desert, Israel Clay Minerals 31 183202 10.1180/claymin.1996.031.2.04.CrossRefGoogle Scholar
Watts, N.L., (1976) Paleopedogenic palygorskite from the basal Permo-Triassic of northwest Scotland American Mineralogist 61 299302.Google Scholar
Watts, N.L., (1980) Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis Sedimentology 27 661686 10.1111/j.1365-3091.1980.tb01654.x.CrossRefGoogle Scholar
Weaver, C.E., (1984) Origin and geologic implications of the palygorkite of S.E. United States Palygorskite-Sepiolite. Occurrences, Genesis and Uses 37 3958.Google Scholar
Wollast, R. Mackenzie, F.T. and Bricker, O., (1968) Experimental precipitation and genesis of sepiolite at earth-surface conditions American Mineralogist 53 16451662.Google Scholar
Yaalon, D.M. and Wieder, M., (1976) Pedogenetic palygorskite in some arid brown (calciothid) soils of Israel Clay Minerals 11 7379 10.1180/claymin.1976.011.1.08.CrossRefGoogle Scholar
Zaaboub, N. Abdeljapouad, S. and López Galindo, A., (2005) Origin of fibrous clays in Tunisian Paleogene continental deposits Journal of African Earth Sciences 43 491504 10.1016/j.jafrearsci.2005.08.013.CrossRefGoogle Scholar