Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T05:39:10.809Z Has data issue: false hasContentIssue false

Crystal Chemistry of Fe-Sudoites From Uranium Deposits in the Athabasca Basin (Saskatchewan, Canada)

Published online by Cambridge University Press:  01 January 2024

Valérie Billault*
Affiliation:
Laboratoire Hydr'ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Daniel Beaufort
Affiliation:
Laboratoire Hydr'ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Patricia Patrier
Affiliation:
Laboratoire Hydr'ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
Sabine Petit
Affiliation:
Laboratoire Hydr'ASA, UMR 6532 CNRS, Université de Poitiers, 40 avenue du Recteur Pineau, 86022 Poitiers Cedex, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sudoites exhibit different crystal-chemical and textural properties which may be related to the structural and valence state of Fe. Mössbauer spectroscopic analysis shows that all Fe previously analyzed using a microprobe (from 1 wt.% to 7.2 wt.% total Fe as Fe2O3) is structural and occurs in both oxidation states (40% Fe2+ and ∼60% Fe3+). Electron microprobe analyses from ∼200 sudoites indicate that Fe occurs in both octahedral sheets according to three main types of substitution: Fe3+ = octahedral Al; Fe2+ = Mg; and Fe3+ + Fe2++ □ = 3Mg. Decreasing tetrahedral substitution balances Fe3+ substitution in the trioctahedral sheet. Increasing octahedral Fe results in a more dioctahedral character of sudoite.

X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, differential thermal analysis (DTA) and scanning electron microscope-transmission electron microscope (SEM-TEM) analyses showed that increasing octahedral Fe is associated with decreased stacking order and thermal stability due to the greater number of defects. In addition, with increasing octahedral Fe in sudoite, particles became smaller and more anhedral and consequently less stable with increasing Fe content. These structural and textural variations are interpreted as a result of the distortion of the sudoite structure by substitutions of Fe3+ with larger ionic radii for Al and Mg octahedral cations and by the formation of octahedral vacancies.

Type
Research Article
Copyright
Copyright © 2002, The Clay Minerals Society

References

Alysheva, E.I. Rusinova, O.V. and Chekvaidze, V.B., (1977) On sudoites from the polymetal deposits of Rydnyy Altai Doklady Academii Nauk SSSR 236 722 724.Google Scholar
Anceau, A., (1992) Sudoite in some Visean (lower Carboniferous) K-bentonites from Belgium Clay Minerals 27 283292 10.1180/claymin.1992.027.3.02.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structure of layer silicates Crystal Structure of Clay Minerals and their X-ray Identification London Mineralogical Society 28 39.Google Scholar
Bailey, S.W. and Lister, J.S., (1989) Structures, compositions, and X-ray identification of dioctahedral chlorites Clays and Clay Minerals 37 193202 10.1346/CCMN.1989.0370301.Google Scholar
Bailey, S.W. and Tyler, S.A., (1960) Clay minerals associated with the Lake Superior iron ores Economic Geology 55 150175 10.2113/gsecongeo.55.1.150.Google Scholar
Brindley, G.W. and Kao, C., (1986) Relation between structural disorder and other characteristics of kaolinites and dickites Clays and Clay Minerals 34 239249 10.1346/CCMN.1986.0340303.Google Scholar
Cassagnabere, A., (1998) Caractérisation et interprétation de la transition kaolinite-dickite dans les réservoirs à hydrocarbures de Froy et Rind (Mer du Nord, Norvège) Poitiers, France Université de Poitiers 238 pp.Google Scholar
Coey, J.M.D. and Long, G.J., (1984) Mössbauer spectroscopy of silicate minerals Mössbauer Spectroscopy Applied to Inorganic Chemistry New York Plenum Press 443509 10.1007/978-1-4899-0462-1_14.Google Scholar
Daniels, E.J. and Altaner, S.P., (1990) Clay mineral authigenesis in coal and shale from the Anthracite region, Pennsylvania American Mineralogist 75 825 839.Google Scholar
De Grave, E. Vandenbruwaene, J. and Van Bockstael, M., (1987) 57Fe Mössbauer spectroscopic analysis of chlorite Physics and Chemistry of Minerals 15 173180 10.1007/BF00308781.Google Scholar
De Parseval, P. Fournes, L. Fortune, J.P. Moine, B. and Ferret, J., (1991) Distribution du fer dans les chlorites par spectrométrie Mössbauer (57Fe): Fe3+ dans les chlorites du gisement de talc-chlorite de Trimouns (Pyrénées, France) Compte-rendu de l’Académie des Sciences de Paris 312 1321 1326.Google Scholar
Drits, V.A. and Lazarenko, E.K., (1967) Structural-mineralogical characteristics of donbassites Mineral Sbornik, Lvov 21 40 48.Google Scholar
Eggleston, R.A. and Bailey, S.W., (1967) Structural aspects of dioctahedral chlorite American Mineralogist 52 673 689.Google Scholar
Farmer, V.C., (1974) The layer silicates Infrared Spectra of Minerals London Mineralogical Society 331363 10.1180/mono-4.15.Google Scholar
Fayek, M. Kyser, T.K., Burns, P.C. and Finch, R., (1999) Stable isotope geochemistry of uranium deposits Uranium: Mineralogy, Geochemistry and the Environment Washington, D.C Mineralogical Society of America 181220 10.1515/9781501509193-009 Reviews in Mineralogy, 38 .Google Scholar
Fransolet, A.M. and Bourguignon, P., (1978) Di/trioctahedral chlorite in quartz veins from the Ardennes, Belgium Canadian Mineralogist 16 365 373.Google Scholar
Hayashi, H. and Oinuma, K., (1964) Aluminian chlorite from Kamikita mine, Japan Clay Science 2 22 30.Google Scholar
Hayashi, H. and Oinuma, K., (1965) Relationship between infrared absorption spectra in the region of 450–900 cm−1 and chemical composition of chlorite American Mineralogist 50 476 483.Google Scholar
Hayashi, H. and Oinuma, K., (1967) Si-O absorption band near 1000 cm−1 and OH bands of chlorite American Mineralogist 52 1206 1210.Google Scholar
Herbillon, A.J. Mestdagh, M.M. Vielvoye, L. and Derouane, E.G., (1976) Iron in kaolinite with special reference to kaolinite from tropical soils Clay Minerals 11 201219 10.1180/claymin.1976.011.3.03.Google Scholar
Iida, Y., (1993) Alteration and ore-forming processes of unconformity related uranium deposits Resource Geology, Special Issue 15 299 308.Google Scholar
Kawano, M. and Tomita, K., (1991) Mineralogy and genesis of clays in postmagmatic alteration zones, Makurazaki volacanic area, Kagoshima prefecture, Japan Clays and Clay Minerals 39 597608 10.1346/CCMN.1991.0390605.Google Scholar
Kimbara, K. and Nagata, H., (1974) Clay minerals in the core samples of the mineralized zone of Niida, southern part of Odate Akita Prefecture, Japan Japanese Association of Mineralogists, Petrologists and Economic Geologists Journal 69 239254 10.2465/ganko1941.69.239.Google Scholar
Koster van Groos, A.F. Guggenheim, S., Stucki, J.W. Bish, D.L. and Mumpton, F.A., (1990) High-pressure differential thermal analysis: applications to clay minerals Thermal Analysis in Clay Science Boulder, Colorado., USA The Clay Minerals Society 4994 CMS Workshop Lectures, 3 .Google Scholar
Kotzer, T.G. and Kyser, T.K., (1995) Petrogenesis of the Proterozoic Athabasca Basin, northern Saskatchewan, Canada, and its relation to diagenesis, hydrothermal uranium mineralization and paleohydrogeology Chemical Geology 120 4589 10.1016/0009-2541(94)00114-N.Google Scholar
Kramm, U., (1980) Sudoite in low-grade manganese rich-assemblages Neues Jahrbuch für Mineralogie, Abhandlungen 138 1 13.Google Scholar
Lin, C.Y. and Bailey, S.W., (1985) Structural data for sudoite Clays and Clay Minerals 33 410414 10.1346/CCMN.1985.0330506.Google Scholar
Mestdagh, M.M. Vielvoye, L. and Herbillon, A.J., (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content Clay Minerals 15 113 10.1180/claymin.1980.015.1.01.Google Scholar
Moore, D.M. and Reynolds, R.C. Jr, (1989) Sample preparation techniques for clay minerals X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 179 201.Google Scholar
Pacquet, A. and Weber, F., (1993) Pétrographie et minéralogie des halos d’altérations autour du gisement de Cigar Lake et leurs relations avec les mineralisations Canadian Journal of Earth Sciences 30 674688 10.1139/e93-055.Google Scholar
Pagel, M. Poty, B. Sheppard, S.M.F., Ferguson, S. and Gobely, A., (1980) Contributions to some Saskatchewan uranium deposits mainly from fluid inclusions and isotopic data Uranium in Pine Creek Geosyncline Vienna IAEA 639 654.Google Scholar
Pal, T. Das, D. and Mitra, S., (1992) 57Fe Mössbauer investigation of naturally oxidised chlorite Hyperfine Interactions 73 313321 10.1007/BF02418606.Google Scholar
Percival, J.B. and Kodama, H., (1989) Sudoite from Cigar Lake, Saskatchewan Canadian Mineralogist 27 633 641.Google Scholar
Petit, S. and Decarreau, A., (1990) Hydrothermal (200°C) synthesis and crystal chemistry of iron-rich kaolinites Clay Minerals 25 181196 10.1180/claymin.1990.025.2.04.Google Scholar
Rengasamy, P. Krishna Murti, G.S.R. and Sarma, V.A.K., (1975) Isomorphous substitution of iron for aluminum in some soil kaolinites Clays and Clay Minerals 23 211214 10.1346/CCMN.1975.0230308.Google Scholar
Reynolds, R.C. Jr. (1985) NEWMOD: a Computer Program for the calculation of one-dimensional patterns of mixed-layered clays. Reynolds, R.C., 8 Brook Rd., Hanover, New Hampshire, USA.Google Scholar
Schultz, L.G. (1963) Clay minerals in Triassic rocks of the Colorado Plateau. US Geological Survey Bulletin, 1147–C.Google Scholar
Stanton, R.L., (1984) The direct derivation of cordierite from a clay-chlorite precursor: evidence from the Greco mine, Manitouwadge, Ontario Economic Geology 79 12451264 10.2113/gsecongeo.79.6.1245.Google Scholar
Sudo, T. and Sato, M., (1966) Dioctahedral chlorite Proceedings of the International Clay Conference, Jerusalem 1 33 39.Google Scholar
Sudo, T. and Shimoda, S., (1978) Clays and Clay Minerals of Japan Amsterdam Elsevier Developments in Sedimentology, 26 .Google Scholar
Tsukahara, N., (1964) Dioctahedral chlorite from the Furutobe mine, Akita prefecture, Japan Clay Science 2 56 75.Google Scholar