Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T12:52:42.911Z Has data issue: false hasContentIssue false

Crystal Chemistry of Corrensite: A Review

Published online by Cambridge University Press:  02 April 2024

Maria Franca Brigatti
Affiliation:
Istituto di Mineralogia e Petrologia dell'Università, via S. Eufemia 19, 41100 Modena, Italy
Luciano Poppi
Affiliation:
Istituto di Mineralogia e Petrografia dell'Università, Porta S. Donato 1, 40100 Bologna, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Statistical analyses of chemical data from the literature of corrensite minerals suggest a large compositional variability, more evident in octahedral than in tetrahedral coordination. Mg occupies 40–80% of the octahedral sites, with Al and Fe2+ making up the remainder. Approximately 15–30% of the tetrahedral sites are filled by Al. Despite this compositional variability, distinct fields for the several types of mixed-layer trioctahedral chlorite/trioctahedral swelling layer are not apparent. Statistical analyses of the composition of corrensite compared with saponite, vermiculite, and chlorite suggest that corrensite is an intermediate between trioctahedral chlorite and trioctahedral smectite. If Fe/(Fe + Mg) > 50%, chlorite alone is favored, but with increasing Mg, chlorite appears to transform into corrensite and then, by iron oxidation, into trioctahedral smectite. Despite the chemical variability between corrensite, chlorite, and saponite, corrensite appears chemically to be a well-defined species. On the other hand, corrensite cannot be characterized chemically on the basis of its swelling component. Thus, the current definition of corrensite as a regular 1:1 interstratification of trioctahedral chlorite and either trioctahedral smectite or vermiculite is appropriate.

Резюме

Резюме

Статистические анализы литературных химических данных по коррензитовым минералом выказывают большую композиционную разнообразность, которая более очевидна в октаэдрической, чем тетраэдрической координации. Мg занимает 40–80% октаэдрических мест, тогда как остальные места заполняются А1 и Fe2+. Приблизительно 15–30% тетраэдрических мест заполнено Аl. Несмотря на композиционную разнообразность нет очевидных четких областей для нескольких типов смешанно-слойного триоктаэдрического хлорита/триоктаэдрического набухающего слоя. Сравнение статисти¬ческих анализов композиции коррензита с сапонитом, вермикулитом и хлоритом наводит на мысль, что коррензит является промежуточным соединением между триоктаэдрическим хлоритом и три-окраэдрическим смектитом. Если Fе/(Fе + Ме) > 50%, только хлорит является предпочтительным, но с увеличением М§ хлорит, по видимому, преобразовывается в коррензит и при последующем окислении железа—в триоктаэдрический смектит. Несмотря на химическое различие между коррен-зитом, хлоритом и сапонитом, коррензиты, по видимому, являются химически хорошо-определен¬ными видами. С другой стороны, коррензиты не могут быть химически охарактеризованы на основе их набухающего компонента. Таким образом, современное определение коррензита как регулярной прослойки 1:1 триоктаэдрического хлорита и триоктаэдрического смектита или вермикулита яв¬ляется соответствующим. [E.G.]

Resümee

Resümee

Statistische Analysen von chemischen Daten aus der Literatur über Corrensitminerale deuten auf eine große Variabilität der Zusammensetzung hin, die in der oktaedrischen Koordination ausgeprägter ist als in der tetraedrischen Koordination. Mg besetzt 40–80% der oktaedrischen Plätze, während Al und Fe den Rest besetzen. Ungefähr 15–30% der Tetraederplätze werden von Al besetzt. Trotz dieser chemischen Variabilität sind keine getrennten Bereiche für die verschiedenen Arten von Wechsellagerung aus trioktaedrischem Chlorit und trioktaedrischer quellfähiger Schicht zu erkennen. Statistische Analysen der Corrensitzusammensetzung im Vergleich zu Saponit, Vermiculit und Chlorit deuten daraufhin, daß der Corrensit ein Zwischenglied zwischen trioktaedrischem Chlorit und trioktaedrischem Smektit ist. Wenn das Verhältnis Fe/(Fe + Mg) > 50% ist, wird Chlorit allein bevorzugt, aber mit zunehmendem Mg-Gehaltscheint Chlorit in Corrensit umgewandelt zu werden und dann durch Oxidation von Fe in trioktaedrischen Smektit. Trotz der chemischen Variabilität zwischen Corrensit, Chlorit und Saponit scheint der Corrensit eine gut definierte Phase zu sein. Auf der anderen Seite kann der Corrensit chemisch nicht aufgrund seiner quellfähigen Komponente charakterisiert werden. Daher ist die gegenwärtige Definition von Corrensit als eine regelmäßige 1:1 Wechsellagerung von trioktaedrischem Chlorit und entweder trioktaedrischem Smektit oder Vermiculit zutreffend. [U.W.]

Résumé

Résumé

Des analyses statistiques de données chimiques de la littérature concernant les minéraux cor-rensites suggèrent une variabilité de composition très grande, plus évidente dans la coordination octaèdrale que tetraèdrale. Mg occupe 40-80% des sites octaèdraux, avec Al et Fe2+ remplissant le reste. Approximativement 15-30% des sites tetraèdraux sont remplis par Al. Malgré cette variabilité de composition, il n'y a pas d'apparence de champs distincts pour les différents types de couches mélangées chlorite trioctaèdrale/couche gonflante trioctaèdrale. Des analyses statistiques de la composition de corrensite comparée à la saponite, la vermiculite et la chlorite suggèrent que la corrensite est un intermédiaire entre la chlorite trioctaèdrale et la smectite trioctaèdrale. Si Fe/(Fe + Mg) > 50%, la chlorite seule est favorisée, mais avec l'augmentation de Mg, la chlorite semble se transformer en corrensite et ensuite, par oxidation de fer, en smectite trioctaèdrale. Malgré la variabilité chimique entre la corrensite, la chlorite et la saponite, la corrensite semble être chimiquement une espèce bien définie. Mais d'autre part, la corrensite ne peut pas être caractérisée chimiquement sur la base de son composé gonflant. Ainsi, la définition actuelle de la corrensite en tant qu'interstratification 1:1 de chlorite trioctaèdrale et soit de la smectite ou de la vermiculite est appropriée. [D.J.]

Type
Research Article
Copyright
Copyright © 1984, The Clay Minerals Society

References

Alietti, A., 1957 Il minerale interlaminato clorite-saponite di Gotra (Valle del Taro, Appennino parmense) Atti e Mem. Accad. Scienze Lett. Arti Modena 15 114.Google Scholar
Alieni, A., 1957 Some interstratified clay minerals of the Taro Valley Clay Min. Bull. 3 207211.Google Scholar
Almon, W. R., Fullerton, L. B. and Davies, D. K., 1976 Pore space reduction in Cretaceous sandstones through chemical precipitation of clay minerals J. Sed. Petr. 46 8996.Google Scholar
April, R. H., 1980 Regularly interstratified chlorite/ver-miculite in contact metamorphosed red beds, Newark Group, Connecticut Valley Clays & Clay Minerals 28 111.CrossRefGoogle Scholar
April, R. H., 1981 Trioctahedral smectite and interstratified chlorite smectite in Jurassic strata of the Connecticut Valley Clays & Clay Minerals 29 3139.CrossRefGoogle Scholar
Bailey, S. W., Brindley, G. W., Kodama, H. and Martin, R. T., 1982 Report of The Clay Minerals Society Nomenclature Committee for 1980–1981 Clays & Clay Minerals 30 7678.CrossRefGoogle Scholar
Blatter, C. L., Robertson, H. E. and Thompson, G. R., 1973 Regularly interstratified chlorite-dioctahedral smectite in dike intruded shales, Montana Clays & Clay Minerals 21 207212.CrossRefGoogle Scholar
Bradley, W. F. and Weaver, C. E., 1956 A regularly interstratified chlorite-vermiculite clay mineral Amer. Mineral. 41 497504.Google Scholar
Brigarti, M. F., Van Olphen, H. and Veniale, F., 1982 Hisingerite: a review of its crystal chemistry Proc. Int. Clay Conf., Bologna, Pavia, 1981 Amsterdam Elsevier 97110.Google Scholar
Brigatti, M. F. and Poppi, L., 1980 Vermiculite and its relations to parent materials as revealed by chemical features Miner. Petrogr. Acta 24 123134.Google Scholar
Brigatti, M. F. and Poppi, L., 1984 “Corrensite like minerals” in the Taro and Ceno Valleys, Italy Clay Miner. 19 5966.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralog-ical Society.CrossRefGoogle Scholar
Churchman, G. J., 1980 Clay minerals formed from micas and chlorites in some New Zealand soils Clay Miner. 15 5976.CrossRefGoogle Scholar
Davis, J.C., 1973 Statistics and Data Analysis in Geology New York Wiley.Google Scholar
Earley, J. W., Brindley, G. W., McVeagh, W. J. and Vanden Heuvel, R. C., 1956 A regularly interstratified mont-morillonite-chlorite Amer. Mineral. 41 258267.Google Scholar
Foster, M. D. (1962) Interpretation of the composition and a classification of the chlorites: U.S. Geol. Surv. Prof. Pap. 414A, 33 pp.CrossRefGoogle Scholar
Galan, E., Doval, M. and Rosenquist, I. Th., 1977 A proposition to name three regular interstratified minerals containing chlorite Proc. 3rd European Clay Conf, Oslo, 1977 Oslo, Norway Nordic Soc. Clay Res. 6164.Google Scholar
Gallitelli, P., 1956 Sulla presenza di un minerale a strati misti clorite-vermiculite (“swelling-chlorite”) nei diabasi di Rossena e Campotrera nell’Appennino Emiliano Acc. Naz. Lincei Rend. 8 146154.Google Scholar
Gallitelli, P., 1959 The mixed-layer minerals in the “Argille Scagliose” of the Allochtonous Formation of Northern Apennines (Italy) Congr. Géol. Intern., Compt. Rend., 20th, Mexico City 1956, Comité Intern. Estudio Arcilas 2326.Google Scholar
Kimbara, K., 1975 Regularly interstratified clay minerals of chlorite and saponite (“corrensite”) in the Miocene Green Tuff Formation in Japan Bull. Geol. Surv. Japan 26 669679.Google Scholar
Kimbara, K. and Shimoda, S., 1972 An iron-rich saponite and a randomly interstratified mineral of chlorite and saponite in a pillow lava at Nibetsu, Akita Prefecture J. Clay Sci. Soc. Japan 12 133140.Google Scholar
Klovan, J. E. and Imbrie, J., 1971 An algorithm and FORTRAN IV program for large scale Q-MODE factor analysis and calculation of factor score J. Math. Geol. 3 6178.CrossRefGoogle Scholar
Lippmann, F., 1954 Über einen Keuperton von Zaisers-weiher bei Maulbronn Heidelberger Beitr. Mineral. Pe-trogr. 4 130134.Google Scholar
Lippmann, F., 1956 Clay minerals from the Rot member of the Triassic near Göttingen, Germany J. Sed. Petr. 26 125139.CrossRefGoogle Scholar
Lippmann, F., 1957 Die Tonminerale des Göttinger Rot Fortsch. Miner. 35 2830.Google Scholar
Lippmann, F., 1976 Corrensite, a swelling clay mineral, and its influence on floor heave in tunnels in the Keuper Formation Bull. Int. Ass. Engin. Geol. 13 6570.Google Scholar
Lippmann, F. and Johns, W. D., 1969 Regular interstratification in rhombohedral carbonates and layer silicates Neues Jahrb. Min. Mh. 5 212221.Google Scholar
Martin Vivaldi, J. L. and MacEwan, D. M. C., 1960 Corrensite and swelling chlorite Clay Min. Bull. 4 173181.CrossRefGoogle Scholar
Mackenzie, R. C., 1972 Differential Thermal Analysis .Google Scholar
Melnik, U. M., 1959 Corrensite (vermiculite-chlorite) from the gabbro-diabases of Volhynia Mineral. Sb. L’vov 13 387395.Google Scholar
Mongiorgi, R. and Morandi, N., 1970 Al-saponite e strati misti clorite/Al-saponite nelle idrotermaliti di una breccia a contatto coi diabasi di Rossena nell’Appennino reggiano Miner. Petrogr. Acta 16 139154.Google Scholar
Nichols, C. R., 1970 Diabase argillation at King Mountain, Kiowa County, Oklahoma J. Sed. Petrol. 4 848854.Google Scholar
Pacquet, A. (1968) Analcime et argiles diagénétiques dans les formations sédimentaires de la région d’Agades (Républic de Niger): Mém. Sen. Carte Géol. Als.-Lorr. 27 221 pp.Google Scholar
Peterson, M. N. A., 1961 Expandable chloritic clay minerals from Upper Mississippian carbonate rocks of the Cumberland Plateau in Tennessee Amer. Mineral. 46 12451269.Google Scholar
Seki, Y., Liou, J. G., Oki, Y., Dickson, F. W., Sakai, H. and Hirano, T., 1980 The interaction between Miocene vol-canogenic rocks and seawater-meteoric water mixtures in near coast undersea part of the Seikan Tunnel, Japan Mem. Hydrosci. Geotechn. Lab. Saitama Univ. 1 1114.Google Scholar
Shimoda, S., 1970 An expandable chlorite-like mineral from the Hanaoka mine, Akita prefecture, Japan Clay Min. Bull. 8 352359.CrossRefGoogle Scholar
Shirozu, H., Sakasegawa, T., Katsumoto, N. and Ozaki, M., 1975 Mg-chlorite and interstratified Mg-chlorite/sapon-ite associated with Kuroko deposits Clay Sci. 4 305321.Google Scholar
Sudo, T. and Kodama, H., 1957 An aluminian mixed-layer mineral of montmorillonite-chlorite Z. Kristallogr. 109 379387.CrossRefGoogle Scholar
Sugiura, S., 1962 Chlorite-vermiculite mixed layer clay mineral from Noto mine, Ishikawa Prefecture J. Miner. Soc. Japan 5 311323.Google Scholar
Taguchi, S. and Watanabe, T., 1973 Clay minerals associated with gold ores from the fuke mine, Kagoshima Prefecture, with special reference to chlorite-saponite interstratified mineral Sci. Rept., Kyushu Univ., Geol. 11 243250.Google Scholar
Takahashi, H., 1959 A regularly interstratified Mg-mont-morillonite-chlorite from the Tsumemi dolomite deposit, Fukuoka Prefecture, Japan J. Miner. Soc. Japan 4 151156.Google Scholar