Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-18T23:16:28.650Z Has data issue: false hasContentIssue false

The Conversion of X-Ray Intensity Ratios to Composition Ratios in the Electron Probe Analysis of Small Particles Using Mineral Standards

Published online by Cambridge University Press:  01 July 2024

M. A. F. Pyman
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, 6009, Nedlands, Western Australia, Australia
J. W. Hillyert
Affiliation:
Electron Microscopy Centre, University of Western Australia, Nedlands 6009, Western Australia
A. M. Posner
Affiliation:
Department of Soil Science and Plant Nutrition, University of Western Australia, 6009, Nedlands, Western Australia, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

X-ray intensity ratios of Si/Al, Si/Fe, and Al/Fe in micron-sized particles of geochemical standards were found to vary linearly with the composition ratio. The same linear relationship was found for samples of the clay minerals kaolinite and illite.

Резюме

Резюме

Было обнаружено, что отношения интенсивностей рентгеновских лучей для Si/Al, Si/Fe и Al/Fe в частицах микронного размера геохимических эталонов изменяются линейно с изменением отношения составов. Такое же линейное соотношение было обнаружено для образцов глинистых минералов каолинита и иллита.

Kurzreferat

Kurzreferat

Es wurde herausgefunden, daß das Verhältnis der Röntgeninten-sitäten von Si/Al, Si/Fe und Al/Fe in mikrongroßen Partikeln geochemischer Standarts linearisch mit dem Aufbauverhältnis variiert. Dieselbe linearische Verwandtschaft wurde in Proben der Tonmineralien Kaolinit und Illit gefunden.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

References

Armstrong, J. T. and Buseck, P. R. (1975) Quantitative chemical analysis of individual microparticles using the electron microprobe: theoretical: Anal. Chem. 47, 21782190.CrossRefGoogle Scholar
Bayard, M. (1973) Application of the electron microprobe to the analysis of free particulates. In Microprobe Analysis (Edited by Andersen, C. A.) , pp. 323348. Wiley, London and New York.Google Scholar
Bolland, M. D. A. (1975) Surface Charge of Kaolinites in Aqueous Suspension: Ph.D. Thesis, University of Western Australia.CrossRefGoogle Scholar
Reed, S. J. B. (1966) Spatial resolution in electron probe microanalysis. In Optique des rayons X et microanalyse (Edited by Castaing, R., Deschamps, P. and Philibert, J.) pp. 339349. Hermann, Paris.Google Scholar
Rowse, J. B., Jepson, W. B., Bailey, A. T., Climpson, N. A. and Soper, P. M. (1974) Compositional elemental standards for quantitative electron microscope microprobe analysis: J. Phys. E 7, 512514.CrossRefGoogle Scholar
Scott, R. K. (1956) Determination of major elements in clays by X-ray spectroscopy. Fall meeting, Refractions Division, American Ceramics Society. Quoted on p. 223 of X-ray Absorption and Emission in Analytical Chemistry (edited by Liebhafsky, H. A., Pfeiffer, H. G., Winslow, E. H. and Zemany, P. D.) (1960). Wiley, London and New York.Google Scholar
Sweatman, T. R. and Long, J. V. P. (1969) Quantitative electron probe microanalysis of rock forming minerals: J. Petrol. 10, 332379.CrossRefGoogle Scholar
Takagi, S. and Yamaguchi, G. (1971) Electron probe analysis of oxide minerals with a fine texture: Proc. 6th Int. Congr. X-ray Opt. Microanalysis, 761770.Google Scholar
Weeks, T. J. and Passoja, D. E. (1977) A microprobe analysis of Type X molecular sieve: Clays & Clay Minerals 25, 211213.CrossRefGoogle Scholar
White, E. W., Denny, P. J. and Irving, S. M. (1966) Quantitative microprobe analysis of microcrystalline powders. In The Electron Microprobe (Edited by McKinley, T. D., Heinrich, K. F. J. and Wittry, D. B.) , pp. 791804, Wiley. New York, London, and Sydney.Google Scholar